Advertisement

Emergence of Growth and Structural Tendencies During Adaptive Evolution of System

  • Andrzej Gecow
Part of the Understanding Complex Systems book series (UCS)

Summary

We consider (continuing earlier article in this book) functioning directed networks like Kauffman networks or aggregate of automata which have some external outputs. A measure of fitness is defined on the external output signals. We use more than two equally probable signal variants which define our systems as chaotic (and different than RBN-familly and RNS and RWN), however they become really chaotic and complex when they cross certain complexity threshold during their growth. Above this threshold adaptive condition describing Darwinian mechanism creates some structural effects which we name ‘structural tendencies’ and investigate in this paper. We found mechanisms connected to damage spreading which lead to these tendencies. Different network types are considered including random Erdős-Rényi and BA scale free networks. Our model describes a wide range of systems like living objects and human-designed systems because they all grow under adaptive condition and are complex. The structural tendencies are therefore commonly met, however they are known only on an intuitive level. Old classical regularities of ontogeny evolution like terminal modifications and terminal additions are such tendencies. They are contemporarily forgotten and even negated due to lack of their explanations which we propose in this paper. One of such tendencies is the growth of the system.

Keywords

Boolean Network Network Growth Adaptive Condition Free Process Structural Tendency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)CrossRefGoogle Scholar
  2. 2.
    Aldana, M.: Dynamics of Boolean Networks with Scale Free Topology. Physica D 185, 45–66 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–187 (1999)CrossRefGoogle Scholar
  4. 4.
    de Beer, G.: Embryos and Ancestors. Oxford University Press, Oxford (1940)Google Scholar
  5. 5.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of Growing Networks with Preferential Linking. Phys. Rev. Lett. 85, 4633 (2000)CrossRefGoogle Scholar
  6. 6.
    Eldredge, N., Gould, S.J.: Punctuated equilibria: An alternative to Phylecic Gradualism. In: Schopf, T.J.M. (ed.) Models in Paleontology, pp. 82–115. Freeman, Cooper (1972)Google Scholar
  7. 7.
    Erdős, P., Rényi, A.: Random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Science 5, 17–61 (1960)Google Scholar
  8. 8.
    Gecow, A.: A cybernetic model of improving and its application to the evolution and ontogenesis description. In: Proceedings of Fifth International Congress of Biomathematics, Paris (1975)Google Scholar
  9. 9.
    Gecow, A., Hoffman, A.: Self-improvement in a complex cybernetic system and its implication for biology. Acta Biotheoretica 32, 61–71 (1983)CrossRefGoogle Scholar
  10. 10.
    Gecow, A., Nowostawski, M., Purvis, M.: Structural tendencies in complex systems development and their implication for software systems. Journal of Universal Computer Science 11, 327–356 (2005), http://www.jucs.org/jucs_11_2/structural_tendencies_in_complex Google Scholar
  11. 11.
    Gecow, A.: From a “Fossil” Problem of Recapitulation Existence to Computer Simulation and Answer. Neural Network World 3, 189–201 (2005), http://www.cs.cas.cz/nnw/contents2005/number3.shtml Google Scholar
  12. 12.
    Gecow, A.: Structural Tendencies - effects of adaptive evolution of complex (chaotic) systems. Int. J. Mod. Phys. C 19(4), 647–664 (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Gecow, A.: Emergence of Growth, Complexity Threshold and Structural Tendencies During Adaptive Evolution of System. In: EPNACS 2007, Dresden (2007)Google Scholar
  14. 14.
    Gecow, A.: The conditions of structural tendencies. In: Aziz-Alaoui, M.A., Bertelle, C. (eds.) Modelling and Analysis of Complex Interacting Systems (in press)Google Scholar
  15. 15.
    Gould, S.J.: Ontogeny and phylogeny. Harvard University Press, Cambridge (1977)Google Scholar
  16. 16.
    Haeckel, E.: Generelle Morphologie der Organismen. George Reiner, Berlin (1866)Google Scholar
  17. 17.
    Holmes, S.J.: Recapitulation and Its Supposed Causes’. The Quarterly Review of Biology 19(4), 319–331 (1944)CrossRefGoogle Scholar
  18. 18.
    Iguchi, K., Kinoshita, S.I., Yamada, H.: Boolean dynamics of Kauffman models with a scale-free network. J. Theor. Biol. 247, 138–151 (2007)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kauffman, S.A.: Gene regulation networks: a theory for their global structure and behaviour. Current Topics in Dev. Biol. 6, 145 (1971)CrossRefGoogle Scholar
  21. 21.
    Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York (1993)Google Scholar
  22. 22.
    Kauffman, S.A., Peterson, C., Samuelsson, B., Troein, C.: Genetic networks with canalyzing Boolean rules are always stable. PNAS 101(49), 17102–17107 (2004)CrossRefGoogle Scholar
  23. 23.
    Kirillova, O.V.: Influence of a structure on system’s dynamics on example of Boolean networks. Int. J. Mod. Phys. C 10(7), 1247–1260 (1999)CrossRefGoogle Scholar
  24. 24.
    Mikhalevich, V.I.: The phylum Foraminifera d’Orbigny, 1826 - Foraminifers. In: Alimov, A.F. (ed.) Protista: Manual on Zoology, pp. 533–623. Nauka Publishers, St. Petersburg (2000) (in Russian, with English summary, 611–616) Google Scholar
  25. 25.
    Mikhalevich, V.I.: Polymerization and oligomerization in foraminiferal evolution. Studia Geologica Polonica 124, 117–141 (2005)Google Scholar
  26. 26.
    Naef, A.: Die individuelle Entwicklung organischen Formen als Urkunde ihrer Stammesgeschichte, (Jena 1917)Google Scholar
  27. 27.
    Raineri, M.: Old and new concepts in EvoDevo. In: Pontarotti, P. (ed.) Evolution Biology from Concepts to Applications. Springer, Heidelberg (in press)Google Scholar
  28. 28.
    Richardson, M.K., Hanken, J., Gooneratne, M.L., Pieau, C., Raynaud, A., Selwood, L., Wright, G.M.: There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat. Embryol. 196, 91–106 (1997)CrossRefGoogle Scholar
  29. 29.
    Schmalhausen, I.I.: Organism as a whole in individual and historical development Nauka, Moscow (in Russian) (1982); or Szmalhauzen, I.I.: Organizm jako calość w rozwoju indywidualnym i historycznym KiW Warszawa, pp. 87–113 (in Polish) (1962)Google Scholar
  30. 30.
    Schuster, H.: Deterministic Chaos: An Introduction. Physik-Verlag (1984)Google Scholar
  31. 31.
    Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149–157 (2004)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Serra, R., Villani, M., Graudenzi, A., Kauffman, S.A.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246, 449–460 (2007), http://dx.doi.org/10.1016/j.jtbi.2007.01.012 CrossRefMathSciNetGoogle Scholar
  33. 33.
    Serra, R., Villani, M., Damiani, C., Graudenzi, A., Colacci, A., Kauffamn, S.A.: Interacting random boolean networks. In: Jost, J., Helbing, D. (eds.) Proceedings of ECCS 2007: European Conference on Complex Systems, paper #165 (2007) (CD-Rom)Google Scholar
  34. 34.
    Wagner, A.: Estimating coarse gene network structure from large-scale gene perturbation data. Santa Fe Institute Working Paper, 01-09-051 (2001)Google Scholar
  35. 35.
    Weismann, A.: The Evolution Theory, 2 vols., London (1904)Google Scholar
  36. 36.
    Wilkins, A.S.: The evolution of developmental pathways, pp. 19–22. Sinauer Associates, Inc., Sunderland (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrzej Gecow
    • 1
  1. 1.Institute of PaleobiologyPolish Academy of ScienceWarsawPoland

Personalised recommendations