Advertisement

Query Relaxation in Cooperative Query Processing

  • Arianna D’Ulizia
  • Fernando Ferri
  • Patrizia Grifoni
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 225)

Abstract

This chapter explores new trends of query relaxation strategies that allow to implement a cooperative query processing paradigm. This new paradigm is based on the belief that the user has an idea of what he/she wants and the system has to automatically lead him/her to formulate meaningful queries by relaxing query constraints. Three kinds of query relaxation mechanisms are investigated: semantic, structural and topological query relaxation. Moreover, as similarity is an important, widely used concept in the co-operative query processing since it supports the identification of objects that are close, we intend to give an extensive overview of existing similarity definitions and methodologies for evaluating it.

Keywords

Query Processing Semantic Similarity Topological Relation Topological Relationship Entity Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. Morgan Kaufmann, San Francisco (2000)Google Scholar
  2. 2.
    Barg, M., Wong, R.K.: Cooperative Query Answering for Semistructured Data. In: Schewe, K.-D., Zhou, X. (eds.) Proc. Fourteenth Australasian Database Conference (ADC 2003) CRPIT, Adelaide, Australia, vol. 17, pp. 209–215. ACS (2003)Google Scholar
  3. 3.
    Candan, K.S., Kim, J.W., Liu, H., Suvarna, R.: Structure-based mining of hierarchical media data, metadata, and ontologies. In: 5th Workshop on Multimedia Data Mining, Seattle, WA (2004)Google Scholar
  4. 4.
    Chien, S., Immorlica, N.: Semantic Similarity between Search Engine Queries using Temporal Correlation. In: International World Wide Web Conference Committee (IW3C2), WWW 2005, Chiba, Japan, May 10-14, pp. 2–11 (2005)Google Scholar
  5. 5.
    Dalamagas, T., Cheng, T., Winkel, K.J., Sellis, T.K.: Clustering XML Documents by Structure. In: Vouros, G.A., Panayiotopoulos, T. (eds.) SETN 2004. LNCS, vol. 3025, pp. 112–121. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    D’Ulizia, A., Ferri, F., Grifoni, P., Rafanelli, M.: Relaxing constraints on GeoPQL operators for improving query answering. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 728–737. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    D’Ulizia, A., Ferri, F., Grifoni, P., Rafanelli, M.: Structural similarity in geographical queries to improve query answering. In: Proceedings of the 2007 ACM Symposium on Applied Computing (SAC), Seoul, Korea, pp. 19–23 (2007)Google Scholar
  8. 8.
    Dylla, F., Moratz, R.: Exploiting qualitative spatial neighborhoods in the situation calculus. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS, vol. 3343, pp. 304–322. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Egenhofer, M.J.: Query Processing in Spatial-Query-by-Sketch. Journal of Visual Languages and Computing 8(4), 403–424 (1997)CrossRefGoogle Scholar
  10. 10.
    Egenhofer, M.J., Sharma, J.: Topological relations between regions in R2 and Z2. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 316–336. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Egenhofer, M.J.: Reasoning about binary topological relations. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Ferri, F., Formica, A., Grifoni, P., Rafanelli, M.: Query approximation by semantic similarity in GeoPQL. In: 2nd International Workshop on Semantic-based Geographical Information Systems (SeBGIS 2006), Montpellier, France (2006)Google Scholar
  13. 13.
    Formica, A., Missikoff, M.: Concept Similarity in SymOntos: an Enterprise Ontology Management Tool. The Computer Journal 45(6), 583–594 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Francis, W.N., Kucera, H.: Frequency Analysis of English Usage. Houghton Mifflin, Boston (1982)Google Scholar
  15. 15.
    Haveliwala, T., Gionis, A., Klein, D., Indyk, P.: Evaluating strategies for similarity search on the web. In: Proceedings of WWW, Hawai, USA (2002)Google Scholar
  16. 16.
    Huh, S., Moon, K., Ahn, J.: Cooperative query processing via knowledge abstraction and query relaxation. In: Siau, K. (ed.) Advanced Topics in Database Research, vol. 1, pp. 211–228. IGI Publishing, Hershey (2002)Google Scholar
  17. 17.
    Huhtala, Y., Krkkinen, J., Porkka, P., Toivonen, H.: Efficient discovery of functional and ap-proximate dependencies using partitions. In: Proceedings of ICDE (1998)Google Scholar
  18. 18.
    Lee, J.H., Kim, M.H., Lee, Y.J.: Information retrieval based on conceptual distance in is-a hierarchies. Journal of Documentation 49(2), 188–207 (1989)CrossRefGoogle Scholar
  19. 19.
    Li, W.S., Candan, K.S., Vu, Q., Agrawal, D.: Query Relaxation by Structure and Semantics for Retrieval of Logical Web Documents. IEEE Transactions on Knowledge and Data Engineering 14(4), 768–791 (2002)CrossRefGoogle Scholar
  20. 20.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceedings of the 15th Intern. Conference on Machine Learning, ICML 1998, Madison, WI, pp. 296–304 (1998)Google Scholar
  21. 21.
    Maguitman, A.G., Menczer, F., Roinestad, H., Vespignani, A.: Algorithmic detection of semantic similarity. In: International World Wide Web Conference Committee (IW3C2), WWW 2005, Chiba, Ja-pan, May 10-14, pp. 107–116 (2005)Google Scholar
  22. 22.
    Morocho, V., Perez-Vidal, L., Saltor, F.: Semantic integration on spatial databases SIT-SD prototype. In: Proceedings Of VIII Jornadas de Ingenieria del Software y Bases de Datos, Alicante, Spain, pp. 603–612 (2003)Google Scholar
  23. 23.
    Nambiar, U., Kambhampati, S.: Mining Approximate Functional Dependencies and Concept Similarities to Answer Imprecise Queries. In: Proceedings of the Seventh International Work-shop on the Web and Databases (WebDB 2004), Paris, France, pp. 73–78 (2004)Google Scholar
  24. 24.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transaction on Systems, Man, and Cybernetics 19(1), 17–30 (1989)CrossRefGoogle Scholar
  25. 25.
    Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11, 95–130 (1999)zbMATHGoogle Scholar
  26. 26.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the IJCAI (1995)Google Scholar
  27. 27.
    Richardson, R., Smeaton, A.F., Murphy, J.: Using WordNet as a knowledge base for measuring semantic similarity between words. In: Working paper CA-1294, Dublin City University, School of Computer Applications, Dublin, Ireland (1994)Google Scholar
  28. 28.
    Rodriguez, M.A., Egenhofer, M.J., Blaser, A.D.: Query pre-processing of topological constraints: comparing a composition-based with neighborhood-based approach. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 362–379. Springer, Heidelberg (2003)Google Scholar
  29. 29.
    Rodriguez, M.A., Egenhofer, M.J.: Comparing Geospatial Entity Classes: an Asymmetric and Content-Dependent Similarity Measure. International Journal of Geographical Information Science 18(3), 229–256 (2004)CrossRefGoogle Scholar
  30. 30.
    Rodriguez, M.A., Egenhofer, M.J.: Determining Semantic Similarity among Entity Classes from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering 15(2), 442–456 (2003)CrossRefGoogle Scholar
  31. 31.
    Ross, S.: A First Course in Probability. Macmillan, Basingstoke (1976)zbMATHGoogle Scholar
  32. 32.
    Sussna, M.: Word sense disambiguation for free-text indexing using a massive semantic network. In: Proceed. Second Intern. Conference on Information and Knowledge Management (CIKM 1993), Arlington, Virginia (1993)Google Scholar
  33. 33.
    Tekli, J., Chbeir, R., Yetongnon, K.: A Fine-Grained XML Structural Comparison Approach. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 582–598. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arianna D’Ulizia
    • 1
  • Fernando Ferri
    • 1
  • Patrizia Grifoni
    • 1
  1. 1.Institute of Research on Population and Social PoliciesNational Research CouncilRomeItaly

Personalised recommendations