Advertisement

Frequency Domain Methods for Content-Based Image Retrieval in Multimedia Databases

  • Bartłomiej Stasiak
  • Mykhaylo Yatsymirskyy
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 225)

Abstract

Content-based image retrieval is an important application area for image processing methods associated with computer vision, pattern recognition, machine learning and other fields of artificial intelligence. Image content analysis enables us to use more natural, human-level concepts for querying large collections of images typically found in multimedia databases. Out of the numerous features proposed for image content description those based on frequency representation are of special interest as they often offer high levels of invariance to distortions and noise. In this chapter several frequency domain methods designed to describe different aspects of an image, i.e. contour, texture and shape are discussed. Current standards and database solutions supporting content-based image retrieval, including SQL Multimedia and Application Packages, Oracle 9i/10g interMedia and MPEG-7, are also presented.

Keywords

Discrete Fourier Transform Image Retrieval Fourier Descriptor Frequency Domain Method Multimedia Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Subrahmanian, V.S.: Principles of Multimedia Database Systems. Morgan Kaufmann Publishers Inc., San Francisco (1998)Google Scholar
  2. 2.
    Milanese, R., Cherbuliez, M.: A rotation-, translation-, and scale-invariant approach to content based image retrieval. J. Visual Comm. Image Rep. 10, 186–196 (1999)CrossRefGoogle Scholar
  3. 3.
    Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  4. 4.
    Datta, R., Joshi, D., Li, J., Wang, J.Y.: Image Retrieval: Ideas, Influences, and Trends of the New Age. Penn State University Technical Report CSE 06–009 (2006)Google Scholar
  5. 5.
    Tadeusiewicz, R., Flasinski, M.: Pattern recognition. Polish Scientific Publishers, PWN (1991)Google Scholar
  6. 6.
    Malina, W.: The foundations of automatic image classification (in Polish). Technical University of Gdansk Press (2002)Google Scholar
  7. 7.
    Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Analysis and Machine Intelligence 24(8), 1026–1038 (2002)CrossRefGoogle Scholar
  8. 8.
    Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Analysis and Machine Intelligence 25(9), 1075–1088 (2003)CrossRefGoogle Scholar
  9. 9.
    Li, J., Gray, R.M., Olshen, R.A.: Multiresolution image classification by hierarchical modeling with two dimensional hidden markov models. IEEE Trans. Information Theory 46(5), 1826–1841 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Grace, A.E., Spann, M.: A comparison between Fourier-Mellin descriptors and moment based features for invariant object recognition using neural networks. Pattern Recognition Letters 12, 635–643 (1991)CrossRefGoogle Scholar
  11. 11.
    Pontil, M., Verri, A.: Support vector machines for 3d object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(6), 637–646 (1998)CrossRefGoogle Scholar
  12. 12.
    Aslandogan, Y.A., Yu, C.T.C., Liu, C., Nair, K.R.: Design, Implementation and Evaluation of SCORE. In: Proceedings of the 11th International Conference on Data Engineering (1995)Google Scholar
  13. 13.
    Marcus, S., Subrahmanian, V.S.: Foundations of multimedia database systems. Journal of ACM 43(3) (1996)Google Scholar
  14. 14.
    Li, J.Z., Özsu, M.T., Szafron, D., Oria, V.: MOQL: A multimedia object query language. In: Proceedings of the 3rd International Workshop on Multimedia Information Systems (1997)Google Scholar
  15. 15.
    Li, W.S., Candan, K.S.: SEMCOG: A Hybrid Object-based Image Database System and Its Modeling, Language and Query Processing. In: Proceedings of the 14th International Conference on Data Engineering (1998)Google Scholar
  16. 16.
    Melton, J., Eisenberg, A.: SQL Multimedia and Application Packages (SQL/MM). SIGMOD Record 30(4), 97–102 (2001)CrossRefGoogle Scholar
  17. 17.
    ISO/IEC 13249–5:2003, Information Technology – Database Languages – SQL Multimedia and Application Packages – Part 5: Still Image (2003)Google Scholar
  18. 18.
    Oracle9i interMedia Users Guide and Reference, Release 2 (9.2). Oracle (2002)Google Scholar
  19. 19.
  20. 20.
    ISO/IEC 15938–3, Information technology – Multimedia Content Description Interface: VisualGoogle Scholar
  21. 21.
    Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., et al.: Query by image and video content: the qbic system. IEEE Computer 28(9) (1995)Google Scholar
  22. 22.
    Stricker, M., Orengo, M.: Similarity of color images. In: SPIE Storage and Retrieval for Image and Video Databases III, vol. 2185, pp. 381–392 (1995)Google Scholar
  23. 23.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  24. 24.
    Swain, M.J., Ballard, D.H.: Color Indexing. International J. of Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  25. 25.
    Gong, Y., Zhang, H.J., Chua, T.C.: An image database system with content capturing and fast image indexing abilities. In: Proc. IEEE International Conference on Multimedia Computing and Systems, Boston, pp. 121–130 (1994)Google Scholar
  26. 26.
    Smith, J., Chang, S.F.: Visualseek: a fully automated content-based image query system. In: Proc. ACM Multimedia (1997)Google Scholar
  27. 27.
    Pass, G., Zabith, R.: Histogram refinement for content-based image retrieval. In: IEEE Workshop on Applications of Computer Vision, pp. 96–102 (1996)Google Scholar
  28. 28.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlogram. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition, Puerto Rico, pp. 762–768 (1997)Google Scholar
  29. 29.
    Finlayson, G.D.: Color in perspective. IEEE Trans on Pattern Analysis and Machine Intelligence 8(10), 1034–1038 (1996)CrossRefGoogle Scholar
  30. 30.
    Gevers, T., Smeulders, A.W.M.: Content-based image retrieval by viewpoint-invariant image indexing. Image and Vision Computing 17(7), 475–488 (1999)CrossRefGoogle Scholar
  31. 31.
    Gevers, T., Smeulders, A.W.M.: Pictoseek: Combining color and shape invariant features for image retrieval. IEEE Trans. on image processing 9(1), 102–119 (2000)CrossRefGoogle Scholar
  32. 32.
    Picard, R.W., Kabir, T., Liu, F.: Real-time recognition with the entire Brodatz texture database. In: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 638–639 (1993)Google Scholar
  33. 33.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based feature distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  34. 34.
    Voorhees, H., Poggio, T.: Computing texture boundaries from images. Nature 333, 364–367 (1988)CrossRefGoogle Scholar
  35. 35.
    Zhang, J., Tan, T.: Affine invariant classification and retrieval of texture images. Pattern Recognition 36(3), 657–664 (2003)CrossRefGoogle Scholar
  36. 36.
    Ma, W.Y., Manjunath, B.S.: Image indexing using a texture dictionary. In: Proc. of SPIE Conf. on Image Storage and Archiving System, vol. 2606, pp. 288–298 (1995)Google Scholar
  37. 37.
    Kankanhalli, A., Zhang, H.J., Low, C.Y.: Using texture for image retrieval. In: Third Int. Conf. on Automation, Robotics and Computer Vision, pp. 935–939 (1994)Google Scholar
  38. 38.
    Schiele, B., Crowley, J.L.: Recognition without Correspondence using Multidimensional Receptive Field Histograms. International Journal of Computer Vision 36(1), 31–52 (2000)CrossRefGoogle Scholar
  39. 39.
    Long, F., Zhang, H.J., Feng, D.D.: Fundamentals of content-based image retrieval. In: Feng, D. (ed.) Multimedia Information Retrieval and Management. Springer, Berlin (2002)Google Scholar
  40. 40.
    Ma, W.Y., Manjunath, B.S.: A comparison of wavelet features for texture annotation. In: Proc. of IEEE Int. Conf. on Image Processing, vol. II, pp. 256–259 (1995)Google Scholar
  41. 41.
    Laine, A., Fan, J.: Texture classification by wavelet packet signatures. IEEE Trans. Pattern Analysis and Machine Intelligence 15(11), 1186–1191 (1993)CrossRefGoogle Scholar
  42. 42.
    Chang, T., Kuo, C.C.J.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. on Image Processing 2(4), 429–441 (1993)CrossRefGoogle Scholar
  43. 43.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)CrossRefGoogle Scholar
  44. 44.
    Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perception. IEEE Trans. on Systems, Man, and Cybernetics, Smc-8(6) (1978)Google Scholar
  45. 45.
    Liu, F., Picard, R.W.: Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Trans. on Pattern Analysis and Machine Learning 18(7) (1996)Google Scholar
  46. 46.
    Mao, J., Jain, A.K.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition 25(2), 173–188 (1992)CrossRefGoogle Scholar
  47. 47.
    Murase, H., Nayar, S.K.: Visual Learning and Recognition of 3D Objects from Appearance. International Journal of Computer Vision 14, 5–24 (1995)CrossRefGoogle Scholar
  48. 48.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. J. Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  49. 49.
    Mehrotra, R., Gary, J.E.: Similar-shape retrieval in shape data management. IEEE Computer 28(9), 57–62 (1995)Google Scholar
  50. 50.
    Berretti, S., Del Bimbo, A., Pala, P.: Retrieval by shape similarity with perceptual distance and effective indexing. IEEE Trans. Multimedia 2(4), 225–239 (2000)CrossRefGoogle Scholar
  51. 51.
    Petrakis, E. M., Diplaros, A., Milios, E.: Matching and retrieval of distorted and occluded shapes using dynamic programming. IEEE Trans. Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  52. 52.
    Belongie, S., Malik, J., Puzicha, J.: Matching Shapes. In: International Conference on Computer Vision, ICCV 2001 (2001)Google Scholar
  53. 53.
    Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Trans. Information Theory 8(2), 179–187 (1962)CrossRefGoogle Scholar
  54. 54.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 4(3), 321–331 (1988)CrossRefGoogle Scholar
  55. 55.
    Tomczyk, A.: Image Segmentation using Adaptive Potential Active Contours. In: Computer Recognition Systems (CORES), Wroclaw, Polska. Advances in Soft Computing, pp. 148–155. Springer, Heidelberg (2007)Google Scholar
  56. 56.
    Yang, L., Algregtsen, F.: Fast computation of invariant geometric moments: A new method giving correct results. In: Proc. IEEE Int. Conf. on Image Processing, pp. 201–204 (1994)Google Scholar
  57. 57.
    Dudek, G., Tsotsos, J.K.: Shape representation and recognition from multiscale curvature. Comput. Vision Image Understanding 68(2), 170–189 (1997)CrossRefGoogle Scholar
  58. 58.
    Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space. In: Int Workshop on Image Databases and Multimedia Search, Amsterdam, pp. 35–42 (1996)Google Scholar
  59. 59.
    Derrode, S., Ghorbel, F.: Robust and Efficient Fourier-Mellin Transform Approximations for Gray-Level Image Reconstruction and Complete Invariant Description. Computer Vision and Image Understanding 83, 57–78 (2001)zbMATHCrossRefGoogle Scholar
  60. 60.
    Zhang, D.S., Lu, G.: A Comparative Study of Fourier Descriptors for Shape Representation and Retrieval. In: Proc. of the Fifth Asian Conference on Computer Vision (ACCV 2002), pp. 646–651 (2002)Google Scholar
  61. 61.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Cooley, J.W., Lewis, P.A., Welch, P.D.: Application of the Fast Fourier Transform to Computation of Fourier Integrals, Fourier Series and Convolution Integrals. IEEE Trans. on Audio and Electroacoustics 15(2), 79–84 (1967)CrossRefGoogle Scholar
  63. 63.
    Puchala, D., Yatsymirskyy, M.: Fast Adaptive Fourier Transform for Fourier Descriptor Based Contour Classification. In: Computer Recognition Systems 2, vol. 45. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  64. 64.
    Puchala, D., Yatsymirskyy, M.: Fast Adaptive Algorithm for Fourier Transform. In: Proc. of International Conf. on Signals and Electronic Systems, pp. 183–185 (2006)Google Scholar
  65. 65.
  66. 66.
    Gonzales, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  67. 67.
    Puchala, D., Yatsymirskyy, M.: Fast Adaptive Algorithm for Two - dimensional Fourier Transform, Electrical Review 10/2007 PL ISSN 0033–2097, Sigma–Not, 43–46 (2007)Google Scholar
  68. 68.
    Casasent, D., Psaltis, D.: Scale Invariant Optical Transform. Optical Engineering 15(3), 258–261 (1976)Google Scholar
  69. 69.
    Yatagay, T., Choji, K., Saito, H.: Pattern classification using optical Mellin transform and circular photodiode array. Optical Communication 38(3), 162–165 (1981)CrossRefGoogle Scholar
  70. 70.
    Sheng, Y., Arsenault, H.H.: Experiments on pattern recognition using invariant Fourier-Mellin descriptors. J. of the Optical Society of America 3(6), 771–776 (1986)CrossRefGoogle Scholar
  71. 71.
    Ghorbel, F.: A complete invariant description for gray-level images by the harmonic analysis approach. PatternRecog. Lett. 15, 1043–1051 (1994)Google Scholar
  72. 72.
    Derrode, S., Ghorbel, F.: Shape analysis and symmetry detection in gray-level objects using the analytical Fourier-Mellin representation. Signal Processing 84, 25–39 (2004)zbMATHCrossRefGoogle Scholar
  73. 73.
    Stasiak, B., Yatsymirskyy, M.: Comparative analysis of image descriptors based on Fourier-Mellin transform (in Polish). In: Selected Problems of Computer Science, pp. 569–577. Academic Publishing House EXIT Warsaw (2005)Google Scholar
  74. 74.
    Stasiak, B., Yatsymirskyy, M.: Application of Fourier-Mellin Transform to Categorization of 3D Objects (in Polish). In: Proc. of the 3rd Conference on Information Technologies, pp. 185–192 (2005)Google Scholar
  75. 75.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20), Tech. Report CUCS-005-96, Columbia University (1996)Google Scholar
  76. 76.
    Leibe, B., Schiele, B.: Analyzing Appearance and Contour Based Methods for Object Categorization. In: International Conference on Computer Vision and Pattern Recognition (CVPR 2003), Madison, Wisconsin (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bartłomiej Stasiak
    • 1
  • Mykhaylo Yatsymirskyy
    • 1
  1. 1.Institute of Computer ScienceTechnical University of LodzLodzPoland

Personalised recommendations