Skip to main content

Vpr and Its Interactions with Cellular Proteins

  • Chapter
  • First Online:
HIV Interactions with Host Cell Proteins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 339))

Abstract

Like most viral regulatory proteins, HIV-1 Vpr and homologous proteins from primate lentiviruses are small and multifunctional. They are associated with a plethora of effects and functions, including induction of cell cycle arrest in the G2 phase, induction of apoptosis, transactivation, enhancement of the fidelity of reverse transcription, and nuclear import of viral DNA in macrophages and other nondividing cells. This review focuses on the cellular proteins that have been reported to interact with Vpr and their significance with respect to the known functions and effects of Vpr on cells and on viral replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANT:

Adenine nucleotide transporter

APOBEC3:

Apolipoprotein B mRNA-editing, catalytic polypeptide-like

ATM:

Ataxia telangiectasia-mutated

ATR:

ATM and Rad3-related

Cdc:

Cell division cycle

Cdk:

Cyclin-dependent kinase

Chk1:

Checkpoint protein 1

CREB:

Cyclic AMP response element binding protein

Cul4:

Cullin 4

CypA:

Cyclophilin A

DCAF1:

DDB1 and Cul4 associated factor-1

DDB1:

Damaged DNA-binding protein-1

GADD45α:

Growth arrest and DNA damage protein alpha

GR:

Glucocorticoid receptor

HHR23:

Human homolog of Rad23

HIV:

Human immunodeficiency virus

Hsp70:

Heat shock protein 70

LTR:

Long terminal repeat

MDM:

Monocyte-derived macrophages

NE:

Nuclear envelope

PTPC:

Permeability transition pore complex

Rad23:

Radiation-sensitive 23

Roc1:

Ring of cullins

SAP:

Splicing-associated protein

SIV:

Simian immunodeficiency virus

TFIIB:

Transcription factor IIB

UNG:

Uracil-N glycosylase

Vpr:

Viral protein regulatory

VprBP:

Vpr-binding protein

References

  • Agostini I, Navarro JM, Bouhamdan M et al (1999) The HIV-1 Vpr co-activator induces a conformational change in TFIIB. FEBS Lett 450:235–239

    PubMed  CAS  Google Scholar 

  • Amini S, Saunders M, Kelley K, et al. (2004) Interplay between HIV-1 Vpr and Sp1 modulates p21WAF1 gene expression in human astrocytes. J Biol Chem 279:46046–46056

    Google Scholar 

  • Andersen JL, Planelles V (2005) The role of Vpr in HIV-1 pathogenesis. Curr HIV Res 3:43–51

    PubMed  CAS  Google Scholar 

  • Andersen JL, Le Rouzic E, Planelles V (2008) HIV-1 Vpr: mechanisms of G2 arrest and apoptosis. Exp Mol Pathol 85:2–10

    PubMed  CAS  Google Scholar 

  • Andersen JL, Zimmerman ES, DeHart JL et al (2005) ATR and GADD45alpha mediate HIV-1 Vpr-induced apoptosis. Cell Death Differ 12:326–334

    PubMed  CAS  Google Scholar 

  • Andersen JL, DeHart JL, Zimmerman ES et al (2006) HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT. PLoS Pathog 2:e127

    PubMed  Google Scholar 

  • Angers S, Li T, Yi X et al (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443:590–593

    PubMed  CAS  Google Scholar 

  • Ardon O, Zimmerman ES, Andersen JL et al (2006) Induction of G2 arrest and binding to cyclophilin A are independent phenotypes of human immunodeficiency virus type 1 Vpr. J Virol 80:3694–3700

    PubMed  CAS  Google Scholar 

  • Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes - integrating cell survival and death. J Biosci 32:595–610

    PubMed  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    PubMed  CAS  Google Scholar 

  • Bartz SR, Rogel ME, Emerman M (1996) Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J Virol 70:2324–2331

    PubMed  CAS  Google Scholar 

  • Belzile JP, Duisit G, Rougeau N et al (2007) HIV-1 Vpr-mediated G2 arrest involves the DDB1-CUL4A(VPRBP) E3 ubiquitin ligase. PLoS Pathog 3:e85

    PubMed  Google Scholar 

  • Bolton DL, Lenardo MJ (2007) Vpr cytopathicity independent of G2/M cell cycle arrest in human immunodeficiency virus type 1-infected CD4+ T cells. J Virol 81:8878–8890

    PubMed  CAS  Google Scholar 

  • Bolton DL, Barnitz RA, Sakai K, Lenardo MJ (2008) 14–3-3 theta binding to cell cycle regulatory factors is enhanced by HIV-1 Vpr. Biol Direct 3:17

    PubMed  Google Scholar 

  • Bolton DL, Hahn BI, Park EA et al (2002) Death of CD4(+) T-cell lines caused by human immunodeficiency virus type 1 does not depend on caspases or apoptosis. J Virol 76:5094–5107

    PubMed  CAS  Google Scholar 

  • BouHamdan M, Xue Y, Baudat Y et al (1998) Diversity of HIV-1 Vpr interactions involves usage of the WXXF motif of host cell proteins. J Biol Chem 273:8009–8016

    PubMed  CAS  Google Scholar 

  • Bouhamdan M, Benichou S, Rey F et al (1996) Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme. J Virol 70:697–704

    PubMed  CAS  Google Scholar 

  • Brasey A, Lopez-Lastra M, Ohlmann T et al (2003) The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol 77:3939–3949

    PubMed  CAS  Google Scholar 

  • Bruns K, Fossen T, Wray V et al (2003) Structural characterization of the HIV-1 Vpr N terminus: evidence of cis/trans-proline isomerism. J Biol Chem 278:43188–43201

    PubMed  CAS  Google Scholar 

  • Bukrinsky M, Zhao Y (2004) Heat-shock proteins reverse the G2 arrest caused by HIV-1 viral protein R. DNA Cell Biol 23:223–225

    PubMed  CAS  Google Scholar 

  • Chang F, Re F, Sebastian S et al (2004) HIV-1 Vpr induces defects in mitosis, cytokinesis, nuclear structure, and centrosomes. Mol Biol Cell 15:1793–1801

    PubMed  CAS  Google Scholar 

  • Chen R, Le Rouzic E, Kearney JA et al (2004) Vpr-mediated incorporation of UNG2 into HIV-1 particles is required to modulate the virus mutation rate and for replication in macrophages. J Biol Chem 279:28419–28425

    PubMed  CAS  Google Scholar 

  • Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627

    PubMed  CAS  Google Scholar 

  • Cimprich KA, Shin TB, Keith CT, Schreiber SL (1996) cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci U S A 93:2850–2855

    PubMed  CAS  Google Scholar 

  • Coeytaux E, Coulaud D, Le Cam E et al (2003) The cationic amphipathic alpha-helix of HIV-1 viral protein R (Vpr) binds to nucleic acids, permeabilizes membranes, and efficiently transfects cells. J Biol Chem 278:18110–18116

    PubMed  CAS  Google Scholar 

  • Cooper MP, Balajee AS, Bohr VA (1999) The C-terminal domain of p21 inhibits nucleotide excision repair In vitro and In vivo. Mol Biol Cell 10:2119–2129

    PubMed  CAS  Google Scholar 

  • Cui J, Tungaturthi PK, Ayyavoo V et al (2006) The role of Vpr in the regulation of HIV-1 gene expression. Cell Cycle 5:2626–2638

    PubMed  CAS  Google Scholar 

  • de Noronha CM, Sherman MP, Lin HW et al (2001) Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 294:1105–1108

    PubMed  Google Scholar 

  • DeHart JL, Planelles V (2008) Human immunodeficiency virus type 1 vpr links proteasomal degradation and checkpoint activation. J Virol 82:1066–1072

    PubMed  CAS  Google Scholar 

  • DeHart JL, Zimmerman ES, Ardon O et al (2007) HIV-1 Vpr activates the G2 checkpoint through manipulation of the ubiquitin proteasome system. Virol J 4:57

    PubMed  Google Scholar 

  • Depienne C, Roques P, Creminon C et al (2000) Cellular distribution and karyophilic properties of matrix, integrase, and Vpr proteins from the human and simian immunodeficiency viruses. Exp Cell Res 260:387–395

    PubMed  CAS  Google Scholar 

  • Di Marzio P, Choe S, Ebright M et al (1995) Mutational analysis of cell cycle arrest, nuclear localization and virion packaging of human immunodeficiency virus type 1 Vpr. J Virol 69:7909–7916

    PubMed  Google Scholar 

  • Felzien LK, Woffendin C, Hottiger MO et al (1998) HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc Natl Acad Sci U S A 95:5281–5286

    PubMed  CAS  Google Scholar 

  • Fischer G, Wittmann-Liebold B, Lang K et al (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337:476–478

    PubMed  CAS  Google Scholar 

  • Fletcher TM 3 rd, Brichacek B, Sharova N et al (1996) Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J 15:6155–6165

    PubMed  CAS  Google Scholar 

  • Fouchier RA, Meyer BE, Simon JH et al (1998) Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J Virol 72:6004–6013

    PubMed  CAS  Google Scholar 

  • Fritz JV, Didier P, Clamme JP et al (2008) Direct Vpr-Vpr interaction in cells monitored by two photon fluorescence correlation spectroscopy and fluorescence lifetime imaging. Retrovirology 5:87

    PubMed  Google Scholar 

  • Fujita M, Otsuka M, Miyoshi M et al (2008) Vpx is critical for reverse transcription of the human immunodeficiency virus type 2 genome in macrophages. J Virol 82:7752–7756

    PubMed  CAS  Google Scholar 

  • Gartner S, Markovits P, Markovitz DM et al (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219

    PubMed  CAS  Google Scholar 

  • Ghorpade A, Nukuna A, Che M et al (1998) Human immunodeficiency virus neurotropism: an analysis of viral replication and cytopathicity for divergent strains in monocytes and microglia. J Virol 72:3340–3350

    PubMed  CAS  Google Scholar 

  • Goff SP (2004) Genetic control of retrovirus susceptibility in mammalian cells. Annu Rev Genet 38:61–85

    PubMed  CAS  Google Scholar 

  • Goh WC, Manel N, Emerman M (2004) The human immunodeficiency virus Vpr protein binds Cdc25C: implications for G2 arrest. Virology 318:337–349

    PubMed  CAS  Google Scholar 

  • Goh WC, Rogel ME, Kinsey CM et al (1998) HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med 4:65–71

    PubMed  CAS  Google Scholar 

  • Gorry PR, Churchill M, Crowe SM et al (2005) Pathogenesis of macrophage tropic HIV-1. Curr HIV Res 3:53–60

    PubMed  CAS  Google Scholar 

  • Goujon C, Riviere L, Jarrosson-Wuilleme L et al (2007) SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4:2

    PubMed  Google Scholar 

  • Goujon C, Arfi V, Pertel T, et al (2008) Characterization of SIVsm/HIV-2 Vpx function in human myeloid cells. J Virol 82:12335–12345

    Google Scholar 

  • Gragerov A, Kino T, Ilyina-Gragerova G et al (1998) HHR23A, the human homologue of the yeast repair protein RAD23, interacts specifically with Vpr protein and prevents cell cycle arrest but not the transcriptional effects of Vpr. Virology 245:323–330

    PubMed  CAS  Google Scholar 

  • Guyader M, Emerman M, Montagnier L, Peden K (1989) VPX mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes. EMBO J 8:1169–1175

    PubMed  CAS  Google Scholar 

  • Hashizume C, Kuramitsu M, Zhang X et al (2007) Human immunodeficiency virus type 1 Vpr interacts with spliceosomal protein SAP145 to mediate cellular pre-mRNA splicing inhibition. Microbes Infect 9:490–497

    PubMed  CAS  Google Scholar 

  • Hattori N, Michaels F, Fargnoli K et al (1990) The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human macrophages. Proc Natl Acad Sci USA 87:8080–8084

    PubMed  CAS  Google Scholar 

  • He J, Choe S, Walker R et al (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69:6705–6711

    PubMed  CAS  Google Scholar 

  • He YJ, McCall CM, Hu J et al (2006) DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20:2949–2954

    PubMed  CAS  Google Scholar 

  • Hermeking H, Benzinger A (2006) 14–3-3 proteins in cell cycle regulation. Semin Cancer Biol 16:183–192

    PubMed  CAS  Google Scholar 

  • Higa LA, Mihaylov IS, Banks DP et al (2003) Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol 5:1008–1015

    PubMed  CAS  Google Scholar 

  • Higa LA, Wu M, Ye T et al (2006a) CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 8:1277–1283

    PubMed  CAS  Google Scholar 

  • Higa LA, Yang X, Zheng J et al (2006b) Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle 5:71–77

    PubMed  CAS  Google Scholar 

  • Hrecka K, Gierszewska M, Srivastava S et al (2007) Lentiviral Vpr usurps Cul4-DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle. Proc Natl Acad Sci U S A 104:11778–11783

    PubMed  CAS  Google Scholar 

  • Hrimech M, Yao XJ, Bachand F et al (1999) Human immunodeficiency virus type 1 (HIV-1) Vpr functions as an immediate-early protein during HIV-1 infection. J Virol 73:4101–4109

    PubMed  CAS  Google Scholar 

  • Hu J, McCall CM, Ohta T, Xiong Y (2004) Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6:1003–1009

    PubMed  CAS  Google Scholar 

  • Huang J, Chen J (2008) VprBP targets Merlin to the Roc1-Cul4A-DDB1 E3 ligase complex for degradation. Oncogene 27:4056–4064

    PubMed  CAS  Google Scholar 

  • Iordanskiy S, Zhao Y, DiMarzio P et al (2004a) Heat-shock protein 70 exerts opposing effects on Vpr-dependent and Vpr-independent HIV-1 replication in macrophages. Blood 104:1867–1872

    PubMed  CAS  Google Scholar 

  • Iordanskiy S, Zhao Y, Dubrovsky L et al (2004b) Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol 78:9697–9704

    PubMed  CAS  Google Scholar 

  • Jacotot E, Ravagnan L, Loeffler M et al (2000) The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 191:33–46

    PubMed  CAS  Google Scholar 

  • Jacquot G, Le Rouzic E, David A et al (2007) Localization of HIV-1 Vpr to the nuclear envelope: impact on Vpr functions and virus replication in macrophages. Retrovirology 4:84

    PubMed  Google Scholar 

  • Jenkins Y, McEntee M, Weis K, Greene WC (1998) Characterization of HIV-1 vpr nuclear import: analysis of signals and pathways. J Cell Biol 143:875–885

    PubMed  CAS  Google Scholar 

  • Jenkins Y, Pornillos O, Rich RL et al (2001) Biochemical analyses of the interactions between human immunodeficiency virus type 1 Vpr and p6(Gag). J Virol 75:10537–10542

    PubMed  CAS  Google Scholar 

  • Jin J, Arias EE, Chen J et al (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23:709–721

    PubMed  CAS  Google Scholar 

  • Jowett JB, Planelles V, Poon B et al (1995) The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 69:6304–6313

    PubMed  CAS  Google Scholar 

  • Kaiser SM, Emerman M (2006) Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G. J Virol 80:875–882

    PubMed  CAS  Google Scholar 

  • Kamata M, Aida Y (2000) Two putative alpha-helical domains of human immunodeficiency virus type 1 Vpr mediate nuclear localization by at least two mechanisms. J Virol 74:7179–7186

    PubMed  CAS  Google Scholar 

  • Kamata M, Watanabe N, Nagaoka Y, Chen IS (2008) Human immunodeficiency virus type 1 Vpr binds to the N lobe of the Wee1 kinase domain and enhances kinase activity for CDC2. J Virol 82:5672–5682

    PubMed  CAS  Google Scholar 

  • Kamata M, Nitahara-Kasahara Y, Miyamoto Y et al (2005) Importin-alpha promotes passage through the nuclear pore complex of human immunodeficiency virus type 1 Vpr. J Virol 79:3557–3564

    PubMed  CAS  Google Scholar 

  • Kedzierska K, Crowe SM (2002) The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr Med Chem 9:1893–1903

    PubMed  CAS  Google Scholar 

  • Keegan KS, Holtzman DA, Plug AW et al (1996) The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev 10:2423–2437

    PubMed  CAS  Google Scholar 

  • Kichler A, Pages JC, Leborgne C et al (2000) Efficient DNA transfection mediated by the C-terminal domain of human immunodeficiency virus type 1 viral protein R. J Virol 74:5424–5431

    PubMed  CAS  Google Scholar 

  • Kino T, Pavlakis GN (2004) Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1. DNA Cell Biol 23:193–205

    PubMed  CAS  Google Scholar 

  • Kino T, Gragerov A, Kopp JB et al (1999) The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor. J Exp Med 189:51–62

    PubMed  CAS  Google Scholar 

  • Kino T, Gragerov A, Slobodskaya O et al (2002) Human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces transcription of the HIV-1 and glucocorticoid-responsive promoters by binding directly to p300/CBP coactivators. J Virol 76:9724–9734

    PubMed  CAS  Google Scholar 

  • Kino T, Gragerov A, Valentin A et al (2005) Vpr protein of human immunodeficiency virus type 1 binds to 14–3-3 proteins and facilitates complex formation with Cdc25C: implications for cell cycle arrest. J Virol 79:2780–2787

    PubMed  CAS  Google Scholar 

  • Klarmann GJ, Chen X, North TW, Preston BD (2003) Incorporation of uracil into minus strand DNA affects the specificity of plus strand synthesis initiation during lentiviral reverse transcription. J Biol Chem 278:7902–7909

    PubMed  CAS  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465

    PubMed  CAS  Google Scholar 

  • Lai M, Zimmerman ES, Planelles V, Chen J (2005) Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo. J Virol 79:15443–15451

    PubMed  CAS  Google Scholar 

  • Le Rouzic E, Benichou S (2005) The Vpr protein from HIV-1: distinct roles along the viral life cycle. Retrovirology 2:11

    PubMed  Google Scholar 

  • Le Rouzic E, Mousnier A, Rustum C et al (2002) Docking of HIV-1 Vpr to the nuclear envelope is mediated by the interaction with the nucleoporin hCG1. J Biol Chem 277:45091–45098

    PubMed  Google Scholar 

  • Le Rouzic E, Belaidouni N, Estrabaud E et al (2007) HIV1 Vpr Arrests the Cell Cycle by Recruiting DCAF1/VprBP, a Receptor of the Cul4-DDB1 Ubiquitin Ligase. Cell Cycle 6:182–188

    PubMed  Google Scholar 

  • Lenardo MJ, Angleman SB, Bounkeua V et al (2002) Cytopathic killing of peripheral blood CD4(+) T lymphocytes by human immunodeficiency virus type 1 appears necrotic rather than apoptotic and does not require env. J Virol 76:5082–5093

    PubMed  CAS  Google Scholar 

  • Lu YL, Spearman P, Ratner L (1993) Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol 67:6542–6550

    PubMed  CAS  Google Scholar 

  • Luban J, Bossolt KL, Franke EK et al (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73:1067–1078

    PubMed  CAS  Google Scholar 

  • Mahalingam S, Ayyavoo V, Patel M et al (1997) Nuclear import, virion incorporation, and cell cycle arrest/differentiation are mediated by distinct functional domains of human immunodeficiency virus type 1 Vpr. J Virol 71:6339–6347

    PubMed  CAS  Google Scholar 

  • Mansky LM (1996) The mutation rate of human immunodeficiency virus type 1 is influenced by the vpr gene. Virology 222:391–400

    PubMed  CAS  Google Scholar 

  • Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69:5087–5094

    PubMed  CAS  Google Scholar 

  • Mansky LM, Preveral S, Selig L et al (2000) The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J Virol 74:7039–7047

    PubMed  CAS  Google Scholar 

  • Mansky LM, Preveral S, Le Rouzic E et al (2001) Interaction of human immunodeficiency virus type 1 Vpr with the HHR23A DNA repair protein does not correlate with multiple biological functions of Vpr. Virology 282:176–185

    PubMed  CAS  Google Scholar 

  • McGowan CH, Russell P (2004) The DNA damage response: sensing and signaling. Curr Opin Cell Biol 16:629–633

    PubMed  CAS  Google Scholar 

  • Morellet N, Bouaziz S, Petitjean P, Roques BP (2003) NMR structure of the HIV-1 regulatory protein VPR. J Mol Biol 327:215–227

    PubMed  CAS  Google Scholar 

  • Muthumani K, Hwang DS, Desai BM et al (2002) HIV-1 Vpr induces apoptosis through caspase 9 in T cells and peripheral blood mononuclear cells. J Biol Chem 277:37820–37831

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    PubMed  CAS  Google Scholar 

  • Nitahara-Kasahara Y, Kamata M, Yamamoto T et al (2007) Novel nuclear import of Vpr promoted by importin alpha is crucial for human immunodeficiency virus type 1 replication in macrophages. J Virol 81:5284–5293

    PubMed  CAS  Google Scholar 

  • Ogawa K, Shibata R, Kiyomasu T et al (1989) Mutational analysis of the human immunodeficiency virus vpr open reading frame. J Virol 63:4110–4114

    PubMed  CAS  Google Scholar 

  • Orenstein JM, Fox C, Wahl SM (1997) Macrophages as a source of HIV during opportunistic infections. Science 276:1857–1861

    PubMed  CAS  Google Scholar 

  • Pancio HA, Vander Heyden N, Ratner L (2000) The C-terminal proline-rich tail of human immunodeficiency virus type 2 Vpx is necessary for nuclear localization of the viral preintegration complex in nondividing cells. J Virol 74:6162–6167

    PubMed  CAS  Google Scholar 

  • Parker SF, Perkins ND, Gitlin SD, Nabel GJ (1996) A cooperative interaction of human T-cell leukemia virus type 1 Tax with the p21 cyclin-dependent kinase inhibitor activates the human immunodeficiency virus type 1 enhancer. J Virol 70:5731–5734

    PubMed  CAS  Google Scholar 

  • Planelles V, Jowett JB, Li QX et al (1996) Vpr-induced cell cycle arrest is conserved among primate lentiviruses. J Virol 70:2516–2524

    PubMed  CAS  Google Scholar 

  • Popov S, Rexach M, Ratner L et al (1998a) Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J Biol Chem 273:13347–13352

    PubMed  CAS  Google Scholar 

  • Popov S, Rexach M, Zybarth G et al (1998b) Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. Embo J 17:909–917

    PubMed  CAS  Google Scholar 

  • Rathmell JC, Fox CJ, Plas DR et al (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23:7315–7328

    PubMed  CAS  Google Scholar 

  • Re F, Braaten D, Franke EK, Luban J (1995) Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J Virol 69:6859–6864

    PubMed  CAS  Google Scholar 

  • Refaeli Y, Levy DN, Weiner DB (1995) The glucocorticoid receptor type II complex is a target of the HIV-1 vpr gene product. Proc Natl Acad Sci U S A 92:3621–3625

    PubMed  CAS  Google Scholar 

  • Rogel ME, Wu LI, Emerman M (1995) The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J Virol 69:882–888

    PubMed  CAS  Google Scholar 

  • Roshal M, Kim B, Zhu Y et al (2003) Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem 278:25879–25886

    PubMed  CAS  Google Scholar 

  • Sawaya BE, Khalili K, Mercer WE et al (1998) Cooperative actions of HIV-1 Vpr and p53 modulate viral gene transcription. J Biol Chem 273:20052–20057

    PubMed  CAS  Google Scholar 

  • Schrofelbauer B, Hakata Y, Landau NR (2007) HIV-1 Vpr function is mediated by interaction with the damage-specific DNA-binding protein DDB1. Proc Natl Acad Sci U S A 104:4130–4135

    PubMed  Google Scholar 

  • Schrofelbauer B, Yu Q, Zeitlin SG, Landau NR (2005) Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG uracil-DNA glycosylases. J Virol 79:10978–10987

    PubMed  CAS  Google Scholar 

  • Schuler W, Wecker K, de Rocquigny H et al (1999) NMR structure of the (52–96) C-terminal domain of the HIV-1 regulatory protein Vpr: molecular insights into its biological functions. J Mol Biol 285:2105–2117

    PubMed  CAS  Google Scholar 

  • Schwartz S, Felber BK, Pavlakis GN (1991) Expression of human immunodeficiency virus type 1 vif and vpr mRNAs is Rev-dependent and regulated by splicing. Virology 183:677–686

    PubMed  CAS  Google Scholar 

  • Selig L, Benichou S, Rogel ME et al (1997) Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest. J Virol 71:4842–4846

    PubMed  CAS  Google Scholar 

  • Sharova N, Wu Y, Zhu X et al (2008) Primate lentiviral Vpx commandeers DDB1 to counteract a macrophage restriction. PLoS Pathog 4:e1000057

    PubMed  Google Scholar 

  • Sherman MP, de Noronha CM, Pearce D, Greene WC (2000) Human immunodeficiency virus type 1 Vpr contains two leucine-rich helices that mediate glucocorticoid receptor coactivation independently of its effects on G(2) cell cycle arrest. J Virol 74:8159–8165

    PubMed  CAS  Google Scholar 

  • Sherman MP, de Noronha CM, Heusch MI et al (2001) Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. J Virol 75:1522–1532

    PubMed  CAS  Google Scholar 

  • Sherman MP, Schubert U, Williams SA et al (2002) HIV-1 Vpr displays natural protein-transducing properties: implications for viral pathogenesis. Virology 302:95–105

    PubMed  CAS  Google Scholar 

  • Sherman MP, de Noronha CM, Eckstein LA et al (2003) Nuclear export of Vpr is required for efficient replication of human immunodeficiency virus type 1 in tissue macrophages. J Virol 77:7582–7589

    PubMed  CAS  Google Scholar 

  • Shostak LD, Ludlow J, Fisk J et al (1999) Roles of p53 and caspases in the induction of cell cycle arrest and apoptosis by HIV-1 vpr. Exp Cell Res 251:156–165

    PubMed  CAS  Google Scholar 

  • Siddiqui K, Del Valle L, Morellet N et al (2008) Molecular mimicry in inducing DNA damage between HIV-1 Vpr and the anticancer agent, cisplatin. Oncogene 27:32–43

    PubMed  CAS  Google Scholar 

  • Srivastava S, Swanson SK, Manel N et al (2008) Lentiviral Vpx accessory factor targets VprBP/DCAF1 substrate adaptor for cullin 4 E3 ubiquitin ligase to enable macrophage infection. PLoS Pathog 4:e1000059

    PubMed  Google Scholar 

  • Stewart SA, Poon B, Song JY, Chen IS (2000) Human immunodeficiency virus type 1 vpr induces apoptosis through caspase activation. J Virol 74:3105–3111

    PubMed  CAS  Google Scholar 

  • Stewart SA, Poon B, Jowett JB et al (1999) Lentiviral delivery of HIV-1 Vpr protein induces apoptosis in transformed cells. Proc Natl Acad Sci U S A 96:12039–12043

    PubMed  CAS  Google Scholar 

  • Sugasawa K, Okuda Y, Saijo M et al (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121:387–400

    PubMed  CAS  Google Scholar 

  • Tachiwana H, Shimura M, Nakai-Murakami C et al (2006) HIV-1 Vpr induces DNA double-strand breaks. Cancer Res 66:627–631

    PubMed  CAS  Google Scholar 

  • Takahashi N, Hayano T, Suzuki M (1989) Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337:473–475

    PubMed  CAS  Google Scholar 

  • Tan L, Ehrlich E, Yu XF (2007) DDB1 and Cul4A are required for human immunodeficiency virus type 1 Vpr-induced G2 arrest. J Virol 81:10822–10830

    PubMed  CAS  Google Scholar 

  • Terada Y, Yasuda Y (2006) Human immunodeficiency virus type 1 Vpr induces G2 checkpoint activation by interacting with the splicing factor SAP145. Mol Cell Biol 26:8149–8158

    PubMed  CAS  Google Scholar 

  • Tripp A, Banerjee P, Sieburg M et al (2005) Induction of cell cycle arrest by human T-cell lymphotropic virus type 1 Tax in hematopoietic progenitor (CD34+) cells: modulation of p21cip1/waf1 and p27kip1 expression. J Virol 79:14069–14078

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    PubMed  CAS  Google Scholar 

  • Tungaturthi PK, Sawaya BE, Singh SP et al (2003) Role of HIV-1 Vpr in AIDS pathogenesis: relevance and implications of intravirion, intracellular and free Vpr. Biomed Pharmacother 57:20–24

    PubMed  CAS  Google Scholar 

  • van der Spek PJ, Visser CE, Hanaoka F et al (1996) Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23. Genomics 31:20–27

    PubMed  Google Scholar 

  • Vieira HL, Haouzi D, El Hamel C et al (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ 7:1146–1154

    PubMed  CAS  Google Scholar 

  • Vodicka MA, Koepp DM, Silver PA, Emerman M (1998) HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev 12:175–185

    PubMed  CAS  Google Scholar 

  • Wang H, Zhai L, Xu J et al (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 22:383–394

    PubMed  Google Scholar 

  • Wang L, Mukherjee S, Narayan O, Zhao LJ (1996) Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1. Gene 178:7–13

    PubMed  CAS  Google Scholar 

  • Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226

    Google Scholar 

  • Watanabe N, Yamaguchi T, Akimoto Y et al (2000) Induction of M-phase arrest and apoptosis after HIV-1 Vpr expression through uncoupling of nuclear and centrosomal cycle in HeLa cells. Exp Cell Res 258:261–269

    PubMed  CAS  Google Scholar 

  • Wen X, Duus KM, Friedrich TD, de Noronha CM (2007) The HIV1 protein Vpr acts to promote G2 cell cycle arrest by engaging a DDB1 and Cullin4A-containing ubiquitin ligase complex using VprBP/DCAF1 as an adaptor. J Biol Chem 282:27046–27057

    PubMed  CAS  Google Scholar 

  • Withers-Ward ES, Jowett JB, Stewart SA et al (1997) Human immunodeficiency virus type 1 Vpr interacts with HHR23A, a cellular protein implicated in nucleotide excision DNA repair. J Virol 71:9732–9742

    PubMed  CAS  Google Scholar 

  • Wong-Staal F, Chanda PK, Ghrayeb J (1987) Human immunodeficiency virus: the eighth gene. AIDS Res Hum Retroviruses 3:33–39

    PubMed  CAS  Google Scholar 

  • Yang B, Chen K, Zhang C et al (2007) Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. J Biol Chem 282:11667–11675

    PubMed  CAS  Google Scholar 

  • Yu XF, Yu QC, Essex M, Lee TH (1991) The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage. J Virol 65:5088–5091

    PubMed  CAS  Google Scholar 

  • Yuan H, Xie YM, Chen IS (2003) Depletion of Wee-1 kinase is necessary for both human immunodeficiency virus type 1 Vpr- and gamma irradiation-induced apoptosis. J Virol 77:2063–2070

    PubMed  CAS  Google Scholar 

  • Yuan H, Kamata M, Xie YM, Chen IS (2004) Increased levels of Wee-1 kinase in G(2) are necessary for Vpr- and gamma irradiation-induced G(2) arrest. J Virol 78:8183–8190

    PubMed  CAS  Google Scholar 

  • Zander K, Sherman MP, Tessmer U et al (2003) Cyclophilin A interacts with HIV-1 Vpr and is required for its functional expression. J Biol Chem 278:43202–43213

    PubMed  CAS  Google Scholar 

  • Zhao LJ, Mukherjee S, Narayan O (1994) Biochemical mechanism of HIV-I Vpr function. Specific interaction with a cellular protein. J Biol Chem 269:15577–15582

    CAS  Google Scholar 

  • Zhu Y, Gelbard HA, Roshal M et al (2001) Comparison of cell cycle arrest, transactivation, and apoptosis induced by the simian immunodeficiency virus SIVagm and human immunodeficiency virus type 1 vpr genes. J Virol 75:3791–3801

    PubMed  CAS  Google Scholar 

  • Zimmerman ES, Chen J, Andersen JL et al (2004) Human Immunodeficiency Virus Type 1 Vpr-Mediated G2 Arrest Requires Rad17 and Hus1 and Induces Nuclear BRCA1 and {gamma}-H2AX Focus Formation. Mol Cell Biol 24:9286–9294

    PubMed  CAS  Google Scholar 

  • Zimmerman ES, Sherman MP, Blackett JL et al (2006) Human immunodeficiency virus type 1 Vpr induces DNA replication stress in vitro and in vivo. J Virol 80:10407–10418

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Andrea Cimarelli (Ecole Normale Supérieure de Lyon, Lyon, France) for helpful comments and suggestions. This work was supported by grant AI49057 from the National Institutes of Health, U.S.A., to V.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Planelles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Planelles, V., Benichou, S. (2009). Vpr and Its Interactions with Cellular Proteins. In: Spearman, P., Freed, E. (eds) HIV Interactions with Host Cell Proteins. Current Topics in Microbiology and Immunology, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02175-6_9

Download citation

Publish with us

Policies and ethics