Skip to main content

Host Restriction of HIV-1 by APOBEC3 and Viral Evasion Through Vif

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 339))

Abstract

The arms race between virus and host is a constant battle. APOBEC3 proteins are known to be potent innate cellular defenses against both endogenous retroelements and diverse retroviruses. However, retroviruses have developed their own methods to launch counter-strikes. Most primate lentiviruses encode a protein called the viral infectivity factor (Vif). Vif induces targeted destruction of APOBEC3 proteins by hijacking the cellular ubiquitin-proteasome pathway. Here we review the research that led up to the identification of A3G, the mechanisms by which APOBEC3 proteins can inhibit retroelements, and the counter-mechanisms that HIV-1 Vif has developed to evade its antiviral activities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguiar RS et al (2008) Vpr.A3A chimera inhibits HIV replication. J Biol Chem 283(5):2518–2525

    PubMed  CAS  Google Scholar 

  • Alce TM, Popik W (2004) APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem 279(33):34083–34086

    PubMed  CAS  Google Scholar 

  • Anderson JL, Hope TJ (2008) APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells. Virology 375(1):1–12

    PubMed  CAS  Google Scholar 

  • Bach D et al (2008) Characterization of APOBEC3G binding to 7SL RNA. Retrovirology 5:54

    PubMed  Google Scholar 

  • Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    PubMed  CAS  Google Scholar 

  • Baumert TF et al (2007) Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C. Hepatology 46(3):683–689

    Google Scholar 

  • Bernardi R, Pandolfi PP (2007) Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8(12):1006–1016

    PubMed  CAS  Google Scholar 

  • Bieniasz PD (2004) Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5(11):1109–1115

    PubMed  CAS  Google Scholar 

  • Billich A et al (1995) Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus (HIV) type 1: interference with HIV protein-cyclophilin A interactions. J Virol 69(4):2451–2461

    PubMed  CAS  Google Scholar 

  • Bishop KN et al (2004) Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol 14(15):1392–1396

    PubMed  CAS  Google Scholar 

  • Bishop KN, Holmes RK, Malim MH (2006) Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol 80(17):8450–8458

    PubMed  CAS  Google Scholar 

  • Bishop KN et al (2008) APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 4(12):e1000231

    PubMed  Google Scholar 

  • Bogerd HP et al (2004) A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc Natl Acad Sci USA 101(11):3770–3774

    PubMed  CAS  Google Scholar 

  • Bogerd HP et al (2006a) Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci USA 103(23):8780–8785

    PubMed  CAS  Google Scholar 

  • Bogerd HP et al (2006b) APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res 34(1):89–95

    PubMed  CAS  Google Scholar 

  • Bonvin M et al (2006) Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43(6):1364–1374

    PubMed  CAS  Google Scholar 

  • Burnett A, Spearman P (2007) APOBEC3G multimers are recruited to the plasma membrane for packaging into human immunodeficiency virus type 1 virus-like particles in an RNA-dependent process requiring the NC basic linker. J Virol 81(10):5000–5013

    PubMed  CAS  Google Scholar 

  • Cai H et al (1993) Kinetics of deoxyribonucleotide insertion and extension at abasic template lesions in different sequence contexts using HIV-1 reverse transcriptase. J Biol Chem 268(231):23567–23572

    PubMed  CAS  Google Scholar 

  • Cen S et al (2004) The interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 279(32):33177–33184

    PubMed  CAS  Google Scholar 

  • Chang AH, O'Shaughnessy MV, Jirik FR (2001) Hck SH3 domain-dependent abrogation of Nef-induced class 1 MHC down-regulation. Eur J Immunol 31(8):2382–2387

    PubMed  CAS  Google Scholar 

  • Chen H et al (2006) APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr Biol 16(5):480–485

    PubMed  CAS  Google Scholar 

  • Chen KM et al (2008) Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature 452(7183):116–119

    PubMed  CAS  Google Scholar 

  • Chiu YL, Greene WC (2008) The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 26:317–353

    PubMed  CAS  Google Scholar 

  • Chiu YL et al (2005) Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435(7038):108–114

    PubMed  CAS  Google Scholar 

  • Chiu YL et al (2006) High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci USA 103(42):15588–15593

    PubMed  CAS  Google Scholar 

  • Conticello SG, Harris RS, Neuberger MS (2003) The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G. Curr Biol 13(22):2009–2013

    PubMed  CAS  Google Scholar 

  • Conticello SG et al (2005) Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases. Mol Biol Evol 22(2):367–377

    PubMed  CAS  Google Scholar 

  • Dang Y et al (2006) Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family. J Virol 80(21):10522–10533

    PubMed  CAS  Google Scholar 

  • Dehart JL et al (2007) HIV-1 Vpr activates the G2 checkpoint through manipulation of the ubiquitin proteasome system. Virol J 4(1):57

    PubMed  Google Scholar 

  • DeHart JL et al (2008) Human immunodeficiency virus type 1 Vif induces cell cycle delay via recruitment of the same E3 ubiquitin ligase complex that targets APOBEC3 proteins for degradation. J Virol 82(18):9265–9272

    PubMed  CAS  Google Scholar 

  • Derse D et al (2007) Resistance of human T cell leukemia virus type 1 to APOBEC3G restriction is mediated by elements in nucleocapsid. Proc Natl Acad Sci USA 104(8):2915–2920

    PubMed  CAS  Google Scholar 

  • Douaisi M et al (2004) HIV-1 and MLV Gag proteins are sufficient to recruit APOBEC3G into virus-like particles. Biochem Biophys Res Commun 321(3):566–573

    PubMed  CAS  Google Scholar 

  • Dutko JA et al (2005) Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases. Curr Biol 15(7):661–666

    PubMed  CAS  Google Scholar 

  • Esnault C et al (2006) Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Res 34(5):1522–1531

    PubMed  CAS  Google Scholar 

  • Furukawa A et al (2009) Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G. Embo J 28(4):440–451

    PubMed  CAS  Google Scholar 

  • Gabuzda DH et al (1992) Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 66(11):6489–6495

    PubMed  CAS  Google Scholar 

  • Goff SP (2003) Death by deamination: a novel host restriction system for HIV-1. Cell 114(3):281–283

    PubMed  CAS  Google Scholar 

  • Goila-Gaur R, Strebel K (2008) HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology 5:51

    PubMed  Google Scholar 

  • Goila-Gaur R et al (2008) HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes. Virology 372(1):136–146

    PubMed  CAS  Google Scholar 

  • Guo F et al (2006) Inhibition of formula-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. J Virol 80(23):11710–11722

    PubMed  CAS  Google Scholar 

  • Guo F, et al. (2007) The interaction of APOBEC3G with HIV-1 nucleocapsid inhibits tRNALys3 annealing to viral RNA. J Virol doi:10.1128/JVI.00162-07

    Google Scholar 

  • Hache G, Liddament MT, Harris RS (2005) The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain. J Biol Chem 280(12):10920–10924

    PubMed  CAS  Google Scholar 

  • Harris RS, Liddament MT (2004) Retroviral restriction by APOBEC proteins. Nat Rev Immunol 4(11):868–877

    PubMed  CAS  Google Scholar 

  • Harris RS, Petersen-Mahrt SK, Neuberger MS (2002) RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 10(5):1247–1253

    PubMed  CAS  Google Scholar 

  • Harris RS et al (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113(6):803–809

    PubMed  CAS  Google Scholar 

  • Hassaine G et al (2001) The tyrosine kinase Hck is an inhibitor of HIV-1 replication counteracted by the viral vif protein. J Biol Chem 276(20):16885–16893

    PubMed  CAS  Google Scholar 

  • He J et al (1995) Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 69(11):6705–6711

    PubMed  CAS  Google Scholar 

  • He Z et al (2008) Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. J Mol Biol 381(4):1000–1011

    PubMed  CAS  Google Scholar 

  • Holden LG et al (2008) Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456(7218):121–124

    PubMed  CAS  Google Scholar 

  • Holmes RK et al (2007) APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G. J Biol Chem 4:2587–2595

    Google Scholar 

  • Huthoff H, Malim MH (2007) Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and virion encapsidation. J Virol 81(8):3807–3815

    PubMed  CAS  Google Scholar 

  • Iwatani Y et al (2006) Biochemical activities of highly purified, catalytically active human APOBEC3G: correlation with antiviral effect. J Virol 80(12):5992–6002

    PubMed  CAS  Google Scholar 

  • Iwatani Y et al (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35(21):7096–7108

    PubMed  CAS  Google Scholar 

  • Jarmuz A et al (2002) An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79(3):285–296

    PubMed  CAS  Google Scholar 

  • Jost S et al (2007) Induction of antiviral cytidine deaminases does not explain the inhibition of hepatitis B virus replication by interferons. J Virol 81(19):10588–10596

    PubMed  CAS  Google Scholar 

  • Jowett JB et al (1995) The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 69(10):6304–6313

    PubMed  CAS  Google Scholar 

  • Kaiser SM, Emerman M (2006) Uracil DNA glycosylase is dispensable for human immunodeficiency virus type 1 replication and does not contribute to the antiviral effects of the cytidine deaminase Apobec3G. J Virol 80(2):875–882

    PubMed  CAS  Google Scholar 

  • Kan NC et al (1986) Identification of HTLV-III/LAV sor gene product and detection of antibodies in human sera. Science 231(4745):1553–1555

    PubMed  CAS  Google Scholar 

  • Kao S et al (2007) Production of infectious virus and degradation of APOBEC3G are separable functional properties of human immunodeficiency virus type 1 Vif. Virology 369(2):329–339

    PubMed  CAS  Google Scholar 

  • Khan MA et al (2005) Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J Virol 79(9):5870–5874

    PubMed  CAS  Google Scholar 

  • Khan MA et al (2007) Analysis of the contribution of cellular and viral RNA to the packaging of APOBEC3G into HIV-1 virions. Retrovirology 4:48

    PubMed  Google Scholar 

  • Klarmann GJ et al (2003) Incorporation of uracil into minus strand DNA affects the specificity of plus strand synthesis initiation during lentiviral reverse transcription. J Biol Chem 278(10):7902–7909

    PubMed  CAS  Google Scholar 

  • Kobayashi M et al (2004) APOBEC3G targets specific virus species. J Virol 78(15):8238–8244

    PubMed  CAS  Google Scholar 

  • Kobayashi M et al (2005) Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-Elongin B-Elongin C complex is essential for Vif function. J Biol Chem 280(19):18573–18578

    PubMed  CAS  Google Scholar 

  • Kreisberg JF, Yonemoto W, Greene WC (2006) Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J Exp Med 203(4):865–870

    PubMed  CAS  Google Scholar 

  • Langlois MA, Neuberger MS (2008) Human APOBEC3G can restrict retroviral infection in avian cells and acts independently of both UNG and SMUG1. J Virol 82(9):4660–4664

    PubMed  CAS  Google Scholar 

  • Lecossier D et al (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300(5622):1112

    PubMed  CAS  Google Scholar 

  • Lee YN, Bieniasz PD (2007) Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog 3(1):e10

    PubMed  Google Scholar 

  • Lee TH et al (1986) A new HTLV-III/LAV protein encoded by a gene found in cytopathic retroviruses. Science 231(4745):1546–1549

    PubMed  CAS  Google Scholar 

  • Lee B et al (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci USA 96(9):5215–5220

    PubMed  CAS  Google Scholar 

  • Lee YN, Malim MH, Bieniasz PD (2008) Hypermutation of an ancient human retrovirus by APOBEC3G. J Virol 82(17):8762–8770

    PubMed  CAS  Google Scholar 

  • Li L et al (2001) Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. Embo J 20(12):3272–3281

    PubMed  CAS  Google Scholar 

  • Li XY et al (2007) APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 282(44):32065–32074

    PubMed  CAS  Google Scholar 

  • Liao W et al (1999) APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochem Biophys Res Commun 260(2):398–404

    PubMed  CAS  Google Scholar 

  • Liddament MT et al (2004) APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14(15):1385–1391

    PubMed  CAS  Google Scholar 

  • Liu B et al (2004) Influence of primate lentiviral Vif and proteasome inhibitors on human immunodeficiency virus type 1 virion packaging of APOBEC3G. J Virol 78(4):2072–2081

    PubMed  CAS  Google Scholar 

  • Liu B et al (2005) Regulation of Apobec3F and human immunodeficiency virus type 1 Vif by Vif-Cul5-ElonB/C E3 ubiquitin ligase. J Virol 79(15):9579–9587

    PubMed  CAS  Google Scholar 

  • Luo K et al (2004) Amino-terminal region of the human immunodeficiency virus type 1 nucleocapsid is required for human APOBEC3G packaging. J Virol 78(21):11841–11852

    PubMed  CAS  Google Scholar 

  • Luo K et al (2005) Primate lentiviral virion infectivity factors are substrate receptors that assemble with cullin 5–E3 ligase through a HCCH motif to suppress APOBEC3G. Proc Natl Acad Sci USA 102(32):11444–11449

    PubMed  CAS  Google Scholar 

  • Luo K et al (2007) Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 81(13):7238–7248

    PubMed  CAS  Google Scholar 

  • Madani N, Kabat D (1998) An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J Virol 72(12):10251–10255

    PubMed  CAS  Google Scholar 

  • Madani N et al (2002) Implication of the lymphocyte-specific nuclear body protein Sp140 in an innate response to human immunodeficiency virus type 1. J Virol 76(21):11133–11138

    PubMed  CAS  Google Scholar 

  • Mahieux R et al (2005) Extensive editing of a small fraction of human T-cell leukemia virus type 1 genomes by four APOBEC3 cytidine deaminases. J Gen Virol 86(Pt 9):2489–2494

    PubMed  CAS  Google Scholar 

  • Mangeat B et al (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424(6944):99–103

    PubMed  CAS  Google Scholar 

  • Mangeat B et al (2004) A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J Biol Chem 279(15):14481–14483

    PubMed  CAS  Google Scholar 

  • Mansky LM et al (2000) The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J Virol 74(15):7039–7047

    PubMed  CAS  Google Scholar 

  • Mariani R et al (2003) Species-Specific Exclusion of APOBEC3G from HIV-1 Virions by Vif. Cell 114(1):21–31

    PubMed  CAS  Google Scholar 

  • Marin M et al (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9(11):1398–1403

    PubMed  CAS  Google Scholar 

  • Marin M et al (2008) Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA metabolism. J Virol 82(2):987–998

    PubMed  CAS  Google Scholar 

  • Mbisa JL et al (2007) Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 81(13):7099–7110

    PubMed  CAS  Google Scholar 

  • Mehle A et al (2004) Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev 18(23):2861–2866

    PubMed  CAS  Google Scholar 

  • Mehle A et al (2006) A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 281(25):17259–17265

    PubMed  CAS  Google Scholar 

  • Mehle A et al (2007) Identification of an APOBEC3G binding site in human immunodeficiency virus type 1 Vif and inhibitors of Vif-APOBEC3G binding. J Virol 81(23):13235–13241

    PubMed  CAS  Google Scholar 

  • Mikl MC et al (2005) Mice deficient in APOBEC2 and APOBEC3. Mol Cell Biol 25(16):7270–7277

    PubMed  CAS  Google Scholar 

  • Miyagi E et al (2007) Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1. J Virol 81(24):13346–13353

    PubMed  CAS  Google Scholar 

  • Muckenfuss H et al (2006) APOBEC3 proteins inhibit human LINE-1 retrotransposition. J Biol Chem 281(31):22161–22172

    PubMed  CAS  Google Scholar 

  • Navarro F, Landau NR (2004) Recent insights into HIV-1 Vif. Curr Opin Immunol 16(4):477–482

    PubMed  CAS  Google Scholar 

  • Navarro F et al (2005) Complementary function of the two catalytic domains of APOBEC3G. Virology 333(2):374–386

    PubMed  CAS  Google Scholar 

  • Newman EN et al (2005) Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol 15(2):166–170

    PubMed  CAS  Google Scholar 

  • Nguyen DH, Gummuluru S, Hu J (2007) Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 81(9):4465–4472

    PubMed  CAS  Google Scholar 

  • Niewiadomska AM et al (2007) Differential inhibition of long interspersed element 1 by APOBEC3 does not correlate with high-molecular-mass-complex formation or P-body association. J Virol 81(17):9577–9583

    PubMed  CAS  Google Scholar 

  • Noguchi C et al (2005) G to A hypermutation of hepatitis B virus. Hepatology 41(3):626–33

    PubMed  CAS  Google Scholar 

  • OhAinle M et al (2008) Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 4(3):249–259

    PubMed  CAS  Google Scholar 

  • Ohsugi T, Koito A (2007) Human T cell leukemia virus type I is resistant to the antiviral effects of APOBEC3. J Virol Methods 139(1):93–96

    PubMed  CAS  Google Scholar 

  • Onafuwa-Nuga AA, Telesnitsky A, King SR (2006) 7SL RNA, but not the 54-kd signal recognition particle protein, is an abundant component of both infectious HIV-1 and minimal virus-like particles. Rna 12(4):542–546

    PubMed  CAS  Google Scholar 

  • Opi S et al (2007) Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant. J Virol 81(15):8236–8246

    PubMed  CAS  Google Scholar 

  • Pickart CM (2004) Back to the future with ubiquitin. Cell 116(2):181–190

    PubMed  CAS  Google Scholar 

  • Priet S et al (2003) Differential incorporation of uracil DNA glycosylase UNG2 into HIV-1, HIV-2, and SIV(MAC) viral particles. Virology 307(2):283–289

    PubMed  CAS  Google Scholar 

  • Rogozin IB et al (2005) APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases predicted by computational analysis. Cell Cycle 4(9):1281–1285

    PubMed  CAS  Google Scholar 

  • Rose KM et al (2004) Transcriptional regulation of APOBEC3G, a cytidine deaminase that hypermutates human immunodeficiency virus. J Biol Chem 279(40):41744–41749

    PubMed  CAS  Google Scholar 

  • Rosler C et al (2005) APOBEC-mediated interference with hepadnavirus production. Hepatology 42(2):301–309

    PubMed  Google Scholar 

  • Russell RA, Pathak VK (2007) Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F. J Virol 81(15):8201–8210

    PubMed  CAS  Google Scholar 

  • Russell RA et al (2008) Distinct domains within apobec3g and apobec3f interact with separate regions of hiv-1 Vif. J Virol 83(4):1992–2003

    PubMed  Google Scholar 

  • Sakai K, Dimas J, Lenardo MJ (2006) The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc Natl Acad Sci USA 103(9):3369–3374

    PubMed  CAS  Google Scholar 

  • Saksela K, Cheng G, Baltimore D (1995) Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. Embo J 14(3):484–491

    PubMed  CAS  Google Scholar 

  • Santa-Marta M et al (2004) HIV-1 Vif can directly inhibit APOBEC3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. J Biol Chem 280(10):8765–8775

    PubMed  Google Scholar 

  • Santa-Marta M et al (2007) HIV-1 Vif protein blocks the cytidine deaminase activity of B-cell specific AID in E. coli by a similar mechanism of action. Mol Immunol 44(4):583–590

    PubMed  CAS  Google Scholar 

  • Sasada A et al (2005) APOBEC3G targets human T-cell leukemia virus type 1. Retrovirology 2(1):32

    PubMed  Google Scholar 

  • Sawyer SL, Emerman M, Malik HS (2004) Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol 2(9):E275

    PubMed  Google Scholar 

  • Schafer A, Bogerd HP, Cullen BR (2004) Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 328(2):163–168

    PubMed  Google Scholar 

  • Schrofelbauer B, Chen D, Landau NR (2004) A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc Natl Acad Sci USA 101(11):3927–3932

    PubMed  Google Scholar 

  • Schrofelbauer B et al (2005) Human immunodeficiency virus type 1 Vpr induces the degradation of the UNG and SMUG uracil-DNA glycosylases. J Virol 79(17):10978–10987

    PubMed  CAS  Google Scholar 

  • Schrofelbauer B et al (2006) Mutational alteration of human immunodeficiency virus type 1 Vif allows for functional interaction with nonhuman primate APOBEC3G. J Virol 80(12):5984–5991

    PubMed  CAS  Google Scholar 

  • Schumacher AJ, Nissley DV, Harris RS (2005) APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast. Proc Natl Acad Sci USA 102(28):9854–9859

    PubMed  CAS  Google Scholar 

  • Schumacher AJ et al (2008) The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD, and human immunodeficiency virus type 1 restriction. J Virol 82(6):2652–2660

    PubMed  CAS  Google Scholar 

  • Sheehy AM et al (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650

    PubMed  CAS  Google Scholar 

  • Sheehy AM, Gaddis NC, Malim MH (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9(11):1404–1407

    PubMed  CAS  Google Scholar 

  • Shirakawa K et al (2008) Phosphorylation of APOBEC3G by protein kinase A regulates its interaction with HIV-1 Vif. Nat Struct Mol Biol 15(11):1184–1191

    PubMed  CAS  Google Scholar 

  • Simon JH, Malim MH (1996) The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J Virol 70(8):5297–5305

    PubMed  CAS  Google Scholar 

  • Simon JH et al (1998) Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med 4(12):1397–1400

    PubMed  CAS  Google Scholar 

  • Simon V et al (2005) Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog 1(1):e6

    PubMed  Google Scholar 

  • Sodroski J et al (1986) Replicative and cytopathic potential of HTLV-III/LAV with sor gene deletions. Science 231(4745):1549–1553

    PubMed  CAS  Google Scholar 

  • Stanley BJ et al (2008) Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. J Virol 82(17):8656–8663

    PubMed  CAS  Google Scholar 

  • Stenglein MD, Harris RS (2006) APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem 281(25):16837–16841

    PubMed  CAS  Google Scholar 

  • Stevenson M et al (1990) HIV-1 replication is controlled at the level of T cell activation and proviral integration. Embo J 9(5):1551–1560

    PubMed  CAS  Google Scholar 

  • Stewart SA et al (1997) Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 71(7):5579–5592

    PubMed  CAS  Google Scholar 

  • Stopak K et al (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12(3):591–601

    PubMed  CAS  Google Scholar 

  • Stopak KS et al (2007) Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 282(6):3539–3546

    PubMed  CAS  Google Scholar 

  • Strebel K et al (1987) The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328(6132):728–730

    PubMed  CAS  Google Scholar 

  • Suspene R et al (2004) APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res 32(8):2421–2429

    PubMed  CAS  Google Scholar 

  • Suspene R et al (2005) Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc Natl Acad Sci USA 102(23):8321–8326

    PubMed  CAS  Google Scholar 

  • Svarovskaia ES et al (2004) Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs. J Biol Chem 279(34):35822–35828

    PubMed  CAS  Google Scholar 

  • Tan L et al (2008) Sole copy of Z2-type human cytidine deaminase APOBEC3H has inhibitory activity against retrotransposons and HIV-1. Faseb J 23(1):279–287

    PubMed  Google Scholar 

  • Tanaka Y et al (2006) Anti-viral protein APOBEC3G is induced by interferon-alpha stimulation in human hepatocytes. Biochem Biophys Res Commun 341(2):314–319

    PubMed  CAS  Google Scholar 

  • Teng B, Burant CF, Davidson NO (1993) Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260(5115):1816–1819

    PubMed  CAS  Google Scholar 

  • Tian C et al (2006) Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F. J Virol 80(6):3112–3115

    PubMed  CAS  Google Scholar 

  • Tian C et al (2007) Virion packaging determinants and reverse transcription of SRP RNA in HIV-1 particles. Nucleic Acids Res 35(21):7288–7302

    PubMed  CAS  Google Scholar 

  • Turelli P, Trono D (2005) Editing at the crossroad of innate and adaptive immunity. Science 307(5712):1061–1065

    PubMed  CAS  Google Scholar 

  • Turelli P et al (2004a) Inhibition of hepatitis B virus replication by APOBEC3G. Science 303(5665):1829

    PubMed  Google Scholar 

  • Turelli P, Vianin S, Trono D (2004b) The innate antiretroviral factor APOBEC3G does not affect human LINE-1 retrotransposition in a cell culture assay. J Biol Chem 279(42):43371–43373

    PubMed  CAS  Google Scholar 

  • Vartanian JP et al (2008) Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320(5873):230–233

    PubMed  CAS  Google Scholar 

  • von Schwedler U et al (1993) Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 67(8):4945–4955

    Google Scholar 

  • Wang T et al (2007a) 7SL RNA mediates virion packaging of the antiviral cytidine deaminase APOBEC3G. J Virol 81(23):13112–13124

    PubMed  CAS  Google Scholar 

  • Wang J et al (2007b) The Vif accessory protein alters the cell cycle of human immunodeficiency virus type 1 infected cells. Virology 359(2):243–252

    PubMed  CAS  Google Scholar 

  • Wang T et al (2008) Distinct viral determinants for the packaging of human cytidine deaminases APOBEC3G and APOBEC3C. Virology 377(1):71–79

    PubMed  CAS  Google Scholar 

  • Waterston RH et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    PubMed  CAS  Google Scholar 

  • Watson AJ, Wilburn LM (1992) Inhibition of HIV infection of resting peripheral blood lymphocytes by nucleosides. AIDS Res Hum Retroviruses 8(7):1221–1227

    PubMed  CAS  Google Scholar 

  • Wiegand HL, Cullen BR (2007) Inhibition of alpharetrovirus replication by a range of human APOBEC3 proteins. J Virol 81(24):13694–13699

    PubMed  CAS  Google Scholar 

  • Wiegand HL et al (2004) A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. Embo J 23(12):2451–2458

    PubMed  CAS  Google Scholar 

  • Willetts KE et al (1999) DNA repair enzyme uracil DNA glycosylase is specifically incorporated into human immunodeficiency virus type 1 viral particles through a Vpr-independent mechanism. J Virol 73(2):1682–1688

    PubMed  CAS  Google Scholar 

  • Xiao Z et al (2007) Characterization of a novel cullin5 binding domain in HIV-1 Vif. J Mol Biol 373(3):541–550

    PubMed  CAS  Google Scholar 

  • Xu H et al (2004) A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc Natl Acad Sci USA 101(15):5652–5657

    PubMed  CAS  Google Scholar 

  • Yang X, Gabuzda D (1998) Mitogen-activated protein kinase phosphorylates and regulates the HIV-1 Vif protein. J Biol Chem 273(45):29879–29887

    PubMed  CAS  Google Scholar 

  • Yang X, Goncalves J, Gabuzda D (1996) Phosphorylation of Vif and its role in HIV-1 replication. J Biol Chem 271(17):10121–10129

    PubMed  CAS  Google Scholar 

  • Yang B et al (2007a) Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. J Biol Chem 282(16):11667–11675

    PubMed  CAS  Google Scholar 

  • Yang Y et al (2007b) Inhibition of initiation of reverse transcription in HIV-1 by human APOBEC3F. Virology 365(1):92–100

    PubMed  CAS  Google Scholar 

  • Yu X et al (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302(5647):1056–1060

    PubMed  CAS  Google Scholar 

  • Yu Q et al (2004a) APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication. J Biol Chem 279(51):53379–53386

    PubMed  CAS  Google Scholar 

  • Yu Q et al (2004b) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11(5):435–442

    PubMed  CAS  Google Scholar 

  • Yu Y et al (2004c) Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev 18(23):2867–2872

    PubMed  CAS  Google Scholar 

  • Zennou V et al (2004) APOBEC3G incorporation into human immunodeficiency virus type 1 particles. J Virol 78(21):12058–12061

    PubMed  CAS  Google Scholar 

  • Zhang J, Webb DM (2004) Rapid evolution of primate antiviral enzyme APOBEC3G. Hum Mol Genet 13(16):1785–1791

    PubMed  CAS  Google Scholar 

  • Zhang H et al (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424(6944):94–98

    PubMed  CAS  Google Scholar 

  • Zhang W et al (2008a) Conserved and non-conserved features of HIV-1 and SIVagm Vif mediated suppression of APOBEC3 cytidine deaminases. Cell Microbiol 10(8):1662–1675

    CAS  Google Scholar 

  • Zhang W et al (2008b) Distinct determinants in HIV-1 Vif and human APOBEC3 proteins are required for the suppression of diverse host anti-viral proteins. PLoS ONE 3(12):e3963

    Google Scholar 

  • Zhang W et al (2008c) Cytidine deaminase APOBEC3B interacts with heterogeneous nuclear ribonucleoprotein K and suppresses hepatitis B virus expression. Cell Microbiol 10(1):112–121

    CAS  Google Scholar 

  • Zheng YH et al (2004) Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78(11):6073–6076

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niewiadomska, A.M., Yu, XF. (2009). Host Restriction of HIV-1 by APOBEC3 and Viral Evasion Through Vif. In: Spearman, P., Freed, E. (eds) HIV Interactions with Host Cell Proteins. Current Topics in Microbiology and Immunology, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02175-6_1

Download citation

Publish with us

Policies and ethics