Skip to main content

Labeling Still Image Databases Using Graphical Models

  • Conference paper
  • 1728 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5524))

Abstract

Graphical models have proved to be very efficient models for labeling image data. In this paper, the use of graphical models based on Decomposable Triangulated Graphs are applied for several still image databases landmark localization. We use a recently presented algorithm based on the Branch&Bound methodology, that is able to improve the state of the art. Experimental results show the improvement given by this new algorithm with respect to the classical Dynamic Programming based approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

    Article  Google Scholar 

  2. Grimson, W.E.L.: Object recognition by computer: the role of geometric constraints. MIT Press, Cambridge (1990)

    Google Scholar 

  3. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley Longman Publishing Co., Inc., Boston (1992)

    Google Scholar 

  4. Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching algorithm. In: Duncan, J.S., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 29–42. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Ullman, S.: High-level Vision. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Caelli, T., Caetano, T.S.: Graphical models for graph matching: Approximate models and optimal algorithms. Pattern Recognition Letters 26(3), 339–346 (2005)

    Article  Google Scholar 

  7. Amit, Y., Kong, A.: Graphical templates for model registration. IEEE PAMI 18(3), 225–236 (1996)

    Article  Google Scholar 

  8. Song, Y., Goncalves, L., Perona, P.: Unsupervised learning of human motion. IEEE Trans. Patt. Anal. and Mach. Intell. 25(7), 1–14 (2003)

    Google Scholar 

  9. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Trans. Comput. 22(1), 67–92 (1973)

    Article  Google Scholar 

  10. Gómez, J.I., Marín-Jiménez, M., de la Blanca, N.P.: Labeling human motion sequences using graphical models. In: International Conf. on Computer Vision Theory and Applications (VISAPP), vol. 1, pp. 488–495 (2009)

    Google Scholar 

  11. Song, Y., Feng, X., Perona, P.: Towards detection of human motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 810–817 (2000)

    Google Scholar 

  12. Cover, T., Thomas, J.: Elements of Information Theory. John Wiley and Sons, Chichester (1991)

    Book  MATH  Google Scholar 

  13. Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV 2004 Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic, pp. 17–32 (2004), http://www.mis.informatik.tu-darmstadt.de/Research/Projects/interleaved/data/

  14. Li, F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: IEEE CVPR Workshop of Generative Model Based Vision (WGMBV) (2004)

    Google Scholar 

  15. Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up segmentation. In: CVPRW 2004: Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2004), vol. 4, p. 46. IEEE Computer Society, Washington (2004), http://www.msri.org/people/members/eranb/

    Google Scholar 

  16. Ferrari, V., Tuytelaars, T., Gool, L.V.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006), http://www.vision.ee.ethz.ch/datasets/

    Chapter  Google Scholar 

  17. Knuth, D.E.: Big omicron and big omega and big theta. SIGACT News 8(2), 18–24 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez, J.I., de la Blanca, N.P. (2009). Labeling Still Image Databases Using Graphical Models. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02172-5_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02171-8

  • Online ISBN: 978-3-642-02172-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics