Skip to main content

Molecular Mechanism of Water and Gas Transport Across Biological Membranes and Consequences for Plant Physiology

  • Chapter
  • First Online:
Progress in Botany 71

Part of the book series: Progress in Botany ((BOTANY,volume 71))

  • 945 Accesses

Abstract

Aquaporins are membrane proteins, facilitating the transport of water across biological membranes. At the time of their discovery, biological membranes were thought to be that permeable for water, that there was no need for proteins facilitating membrane water transport. In fact, the demonstration of aquaporin function was so groundbreaking, that in 2003 the Nobel Prize for Chemistry was awarded to Peter Agre for his discovery of the aquaporins. Another property of certain aquaporins identified in recent years relates to facilitating membrane transport of gasses like CO2 or NH3. This function was also widely thought to be unnecessary, as membranes were believed to be permeable to gasses in general.

In plants, there are many processes where regulation of aquaporin expression and activity is very important. This chapter mainly focuses on involvement of plasma membrane intrinsic aquaporins. PIP1 and PIP2 isoforms are expressed in all parts or organs of the plant. All these differ in morphology and function, and therefore, in their requirement to membrane transport of water or CO2. A striking relevance of aquaporin expression and activity could not only be shown for processes, which are obviously depending on water or CO2, like root water uptake or photosynthesis, but also for plant reproduction, leaf movements, symbiosis, and other processes. Analyzing the role of aquaporins throughout the plant it appears, that in different organs the same type of aquaporin can perform different tasks. It seems that function of aquaporins can be modified according to the requirements of the tissue or organ where they are expressed. In the past, many different approaches to characterize aquaporins were adopted, highlighting a particular contribution of aquaporins on the level of molecules, cells, tissues or complete organisms, also including theoretical and computational analyses and modeling. The term “systems biology” was established to describe interdisciplinary studies on complex interactions in biological systems. The total work done in the field of aquaporins to date is a solid example of systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  PubMed  CAS  Google Scholar 

  • Al-Awqati Q (1999) One hundred years of membrane permeability: does Overton still rule? Nat Cell Biol Dec;1(8):E201–E202

    Google Scholar 

  • Bertl A, Kaldenhoff R (2007) Function of a separate NH3-pore in aquaporin TIP2;2 from wheat. FEBS Lett 581:5413–5417

    Article  PubMed  CAS  Google Scholar 

  • Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570

    Article  PubMed  CAS  Google Scholar 

  • Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani T (2005a) PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot 56:113–121

    PubMed  CAS  Google Scholar 

  • Bots M, Vergeldt F, Wolters-Arts M, Weterings K, van As H, Mariani C (2005b) Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiol 137:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  PubMed  CAS  Google Scholar 

  • Cooper GJ, Zhou YH, Bouyer P, Grichtchenko II, Boron WF (2002) Transport of volatile solutes through AQP1. J Physiol 542:17–29

    Article  PubMed  CAS  Google Scholar 

  • de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357

    Article  PubMed  Google Scholar 

  • de Groot BL, Heymann JB, Engel A, Mitsuoka K, Fujiyoshi Y, Grubmuller H (2000) The fold of human aquaporin 1. J Mol Biol 300:987–994

    Article  PubMed  Google Scholar 

  • de Groot BL, Engel A, Grubmuller H (2003) The structure of the aquaporin-1 water channel: A comparison between cryo-electron microscopy and X-ray crystallography. J Mol Biol 325:485–493

    Article  PubMed  Google Scholar 

  • Dean RM, Rivers RL, Zeidel ML, Roberts DM (1999) Purification and functional reconstitution of soybean nodulin 26: An aquaporin with water and glycerol transport properties. Biochemistry 38:347–353

    Article  PubMed  CAS  Google Scholar 

  • Denker MB, Smith BL, Kuhajada FB, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28, 000 integral membrane protein from erythrocytes and renal tubes. J Biol Chem 263:15634–15642

    PubMed  CAS  Google Scholar 

  • Dreyer I, Antunes S, Hoshi T, Muller-Rober B, Palme K, Pongs O, Reintanz B, Hedrich R (1997) Plant K+ channel alpha-subunits assemble indiscriminately. Biophys J 72:2143–2150

    Article  PubMed  CAS  Google Scholar 

  • Endeward V, Gros G (2005) Low carbon dioxide permeability of the apical epithelial membrane of guinea-pig colon. J Physiol 567:253–265

    Article  PubMed  CAS  Google Scholar 

  • Endeward V, Cartron JP, Ripoche P, Gros G (2006a) Red cell membrane CO2 permeability in normal human blood and in blood deficient in various blood groups, and effect of DIDS. Transfus Clin Biol 13:123–127

    Article  PubMed  CAS  Google Scholar 

  • Endeward V, Musa-Aziz R, Cooper GJ, Chen LM, Pelletier MF, Virkki LV, Supuran CT, King LS, Boron WF, Gros G (2006b) Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J 20:1974–1981

    Article  PubMed  CAS  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  PubMed  CAS  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60(8):2235–2248

    Google Scholar 

  • Fang XH, Yang BX, Matthay MA, Verkman AS (2002) Evidence against aquaporin-1-dependent CO2 permeability in lung and kidney. J Physiol 542:63–69

    Article  PubMed  CAS  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228

    Article  PubMed  CAS  Google Scholar 

  • Fischer M (2007) Untersuchungen zur Modifikation von Aquaporinen aus Nicotiana tabacum. PhD Thesis, Darmstadt University of Technology

    Google Scholar 

  • Fischer M, Kaldenhoff R (2008) On the pH regulation of plant aquaporins. J Biol Chem Dec 5;283(49):33889–33892

    Google Scholar 

  • Fleurat-Lessard P, Frangne N, Maeshima M, Ratajczak R, Bonnemain JL, Martinoia E (1997) Increased Expression of Vacuolar Aquaporin and H+-ATPase Related to Motor Cell Function in Mimosa pudica L. Plant Physiol 114(3):827–834

    Google Scholar 

  • Galmes J, Pou A, Alsina MM, Tomas M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681

    Article  PubMed  CAS  Google Scholar 

  • Gerbeau P, Guclu J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18: 577–587

    Article  PubMed  CAS  Google Scholar 

  • Guo SW, Kaldenhoff R, Uehlein N, Sattelmacher B, Brueck H (2007) Relationship between water and nitrogen uptake in nitrate- and ammonium-supplied Phaseolus vulgaris L. plants. J Plant Nutr Soil Sci 170:73–80

    Article  CAS  Google Scholar 

  • Gutknecht J, Bisson MA, Tosteson FC (1977) Diffusion of carbon-dioxide through lipid bilayer membranes – Effects of carbonic-anhydrase, bicarbonate and unstirred layers. J Gen Physiol 69:779–794

    Article  PubMed  CAS  Google Scholar 

  • He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • Hevesy G, Hofer E, Krogh A (1935) The permeability of the skin of frogs to water as determined by D2O and H2O. Skand Arch Physiol 72:199–214

    Google Scholar 

  • Hicks RM, Ketterer B (1970) Isolation of the plasma membrane of the luminal surface of rat bladder epithelium, and the occurrence of a hexagonal lattice of subunits both in negatively stained whole mounts and in sectioned membranes. J Cell Biol 45:542–553

    Article  PubMed  CAS  Google Scholar 

  • Hicks RM, Ketterer B, Warren RC (1974) The ultrastructure and chemistry of the luminal plasma membrane of the mammalian urinary bladder: a structure with low permeability to water and ions. Philos Trans R Soc Lond B Biol Sci 268:23–38

    Article  CAS  Google Scholar 

  • Hub JS, de Groot BL (2006) Does CO2 permeate through aquaporin-1? Biophys J 91:842–848

    Article  PubMed  CAS  Google Scholar 

  • Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. PNAS 105:1198–1203

    Article  PubMed  CAS  Google Scholar 

  • Jahn TP, Moller ALB, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Fischer M (2006a) Aquaporins in plants. Acta Physiol 187:169–176

    Article  CAS  Google Scholar 

  • Kaldenhoff R, Fischer M (2006b) Functional aquaporin diversity in plants. Biochim Biophys Acta 1758:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Sans JF, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    Article  PubMed  CAS  Google Scholar 

  • Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biol 7:206

    Article  PubMed  Google Scholar 

  • Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  CAS  Google Scholar 

  • Macey RI (1984) Transport of water and urea in red blood cells. Am J Physiol 246:C195–C203

    PubMed  CAS  Google Scholar 

  • Magni F, Sarto C, Ticozzi D, Soldi M, Bosso N, Mocarelli P, Kienle MG (2006) Proteomic knowledge of human aquaporins. Proteomics 6:5637–5649

    Article  PubMed  CAS  Google Scholar 

  • Marjanovic Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiss M, Hampp R, Nehls U (2005) Aquaporins in poplar: what a difference a symbiont makes!. Planta 222:258–268

    Article  PubMed  CAS  Google Scholar 

  • Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  PubMed  CAS  Google Scholar 

  • Nakhoul NL, Davis BA, Romero MF, Boron WF (1998) Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am J Physiol Cell Physiol 43:C543–C548

    Google Scholar 

  • Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett 465:110–114

    Article  PubMed  CAS  Google Scholar 

  • Otto B, Kaldenhoff R (2000) Cell-specific expression of the mercury-insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta 211:167–172

    Article  PubMed  CAS  Google Scholar 

  • Pede N (2008) Untersuchungen zur CO2-Leitfähigkeit pflanzlicher Aquaporine im heterologen Hefesystem. PhD Thesis, Darmstadt University of Technology

    Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  PubMed  CAS  Google Scholar 

  • Quigley F, Rosenberg J, Shachar-Hill Y, Bohnert H (2001) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:001

    Article  Google Scholar 

  • Ranathunge K, Kotula L, Steudle E, Lafitte R (2004) Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J Exp Bot 55:433–447

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H, Kvarstein G, Johnsen H, Dirven H, Midtvedt T, Mirtaheri P, Tonnessen TI (1999) Gas supersaturation in the cecal wall of mice due to bacterial CO2 production. J Appl Physiol 86:1311–1318

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H, Mirtaheri P, Dirven H, Johnsen H, Kvarstein G, Tonnessen TI, Midtvedt T (2002) PCO(2) in the large intestine of mice, rats, guinea pigs, and dogs and effects of the dietary substrate. J Appl Physiol 92:219–224

    PubMed  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Sandal NN, Marcker KA (1988) Soybean nodulin 26 is homologous to the major intrinsic protein of the bovine lens fiber membrane. Nucl Acids Res 16:9347

    Article  PubMed  CAS  Google Scholar 

  • Santoni V, Verdoucq L, Sommerer N, Vinh J, Pflieger D, Maurel C (2006) Methylation of aquaporins in plant plasma membrane. Biochem J 400:189–197

    Article  PubMed  CAS  Google Scholar 

  • Saparov SM, Kozono D, Rothe U, Agre P, Pohl P (2001) Water and ion permeation of aquaporin-1 in planar lipid bilayers: Major differences in structural determinants and stoichiometry. J Biol Chem 276:31515–31520

    Article  PubMed  CAS  Google Scholar 

  • Schuurmans JA, van Dongen JT, Rutjens BP, Boonman A, Pieterse CM, Borstlap AC (2003) Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol Biol 53:633–645

    Article  PubMed  CAS  Google Scholar 

  • Secchi F, Lovisolo C, Uehlein N, Kaldenhoff R, Schubert A (2007) Isolation and functional characterization of three aquaporins from olive (Olea europaea L.). Planta 225:381–392

    Article  PubMed  CAS  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876

    Article  PubMed  CAS  Google Scholar 

  • Siefritz F, Otto B, Bienert GP, van der Krol A, Kaldenhoff R (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37:147–155

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Binder HJ, Geibel JP, Boron WF (1995) An apical permeability barrier to NH3/NH +4 in isolated, perfused colonic crypts. PNAS 92:11573–11577

    Article  PubMed  CAS  Google Scholar 

  • Smith BL, Agre P (1991) Erythrocyte Mr 28, 000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem 266:6407–6415

    PubMed  CAS  Google Scholar 

  • Smith BL, Preston GM, Spring FA, Anstee DJ, Agre P (1994) Human red cell aquaporin CHIP. I. Molecular characterization of ABH and Colton blood group antigens. J Clin Invest 94:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Solomon AK, Chasan B, Dix JA, Lukacovic MF, Toon MR, Verkman AS (1983) The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes, and water. Ann N Y Acad Sci 414:97–124

    Article  PubMed  CAS  Google Scholar 

  • Temmei Y, Uchida S, Hoshino D, Kanzawa N, Kuwahara M, Sasaki S, Tsuchiya T (2005) Water channel activities of Mimosa pudica plasma membrane intrinsic proteins are regulated by direct interaction and phosphorylation. FEBS Lett Aug 15; 579(20):4417–4422

    Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    Article  PubMed  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Kaldenhoff R (2006) Aquaporins and biological rhythm. Biol Rhythm Res 37:315–322

    Article  CAS  Google Scholar 

  • Uehlein N, Kaldenhoff R (2008) Aquaporins and plant leaf movements. Ann Bot 101:1–4

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657

    Article  PubMed  CAS  Google Scholar 

  • Veenhoff LM, Heuberger EH, Poolman B (2001) The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J 20:3056–3062

    Article  PubMed  CAS  Google Scholar 

  • Verbavatz JM, Brown D, Sabolic I, Valenti G, Ausiello DA, van Hoek AN, Ma T, Verkman AS (1993) Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol 123:605–618

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (1989) Mechanisms and regulation of water permeability in renal epithelia. Am J Physiol 257:C837–C850

    PubMed  CAS  Google Scholar 

  • Werner M, Uehlein N, Proksch P, Kaldenhoff R (2001) Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa. Planta 213:550–555

    Article  PubMed  CAS  Google Scholar 

  • Yool AJ, Weinstein AM (2002) New roles for old holes: ion channel function in aquaporin-1. News Physiol Sci 17:68–72

    PubMed  CAS  Google Scholar 

  • Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. PNAS 104:12359–12364

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Uehlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uehlein, N. (2010). Molecular Mechanism of Water and Gas Transport Across Biological Membranes and Consequences for Plant Physiology. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 71. Progress in Botany, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02167-1_9

Download citation

Publish with us

Policies and ethics