Skip to main content

Endoreduplication and Growth of Fleshy Fruits

  • Chapter
  • First Online:
Progress in Botany 71

Abstract

The fruit is a specialized organ, which results from the development of the ovary after successful flower pollination and fertilization, and provides a suitable environment for seed maturation and seed dispersal mechanisms. Due to their importance in human nutrition and their economic inference, fleshy fruit species have been the subject of developmental studies, mostly devoted to ovary formation, fruit set, and fruit maturation. The growth phase of the fruit has been much less addressed, although the complex interplay between cell division and cell expansion during this period is a crucial determinant of the final size, weight and shape of fruits. This chapter aims at reviewing our current knowledge on fleshy fruit development and addresses the cellular and molecular mechanisms involved in their growth, with a special emphasis on the cell expansion associated process of endoreduplication, with tomato fruit as the model species for fleshy fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balbi V, Lomax TL (2003) Regulation of early tomato fruit development by the Diageotropica gene. Plant Physiol 131:186–197

    PubMed  CAS  Google Scholar 

  • Barlow PW (1975) The polytene nucleus of the giant cell of Bryonia anthers. Protoplasma 83:339–349

    CAS  Google Scholar 

  • Baroux C, Fransz P, Grossniklaus U (2004) Nuclear fusions contribute to polyploidization of the gigantic nuclei in the chalazal endosperm of Arabidopsis. Planta 220:38–46

    PubMed  CAS  Google Scholar 

  • Barow M (2006) Endopolyploidy in seed plants. BioEssays 28:271–281

    PubMed  CAS  Google Scholar 

  • Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ 26:571–584

    Google Scholar 

  • Bauer MJ, Birchler JA (2006) Organization of endoreduplicated chromosomes in the endosperm of Zea mays L. Chromosoma 115:383–394

    PubMed  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond Ser B Biol Sci 181:109–135

    CAS  Google Scholar 

  • Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6: 42–50

    PubMed  CAS  Google Scholar 

  • Bergervoet JHW, Verhoeven HA, Gilissen LJW, Bino RJ (1996) High amounts of nuclear DNA in tomato (Lycopersicon esculentum Mill.) pericarp. Plant Sci 116:141–145

    CAS  Google Scholar 

  • Bertin N (2005) Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann Bot 95:439–447

    PubMed  CAS  Google Scholar 

  • Bertin N, Borel C, Brunel B, Cheniclet C, Causse M (2003) Do genetic make-up and growth manipulation affect tomato fruit size by cell number, or cell size and endoreduplication? Ann Bot 92:415–424

    PubMed  CAS  Google Scholar 

  • Bertin N, Lecomte A, Brunel B, Fishman S, Genard M (2007) A model describing cell polyploidization in tissues of growing fruit as related to cessation of cell proliferation. J Exp Bot 58:1903–1913

    PubMed  CAS  Google Scholar 

  • Bisbis B, Delmas F, Joubès J, Sicard A, Hernould M, Inzé D, Mouras A, Chevalier C (2006) Cyclin-Dependent Kinase Inhibitors are involved in endoreduplication during tomato fruit development. J Biol Chem 281:7374–7383

    PubMed  CAS  Google Scholar 

  • Bohner J, Bangerth F (1988a) Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinellifolium differing in frut size. Physiol Plant 72:316–320

    CAS  Google Scholar 

  • Bohner J, Bangerth F (1988b) Effect of fruit-set sequence and defoliation on cell number, cell size and hormone levels of tomato fruits (Lycopersicon esculentum Mill.) within a truss. Plant Growth Regul 7:141–155

    CAS  Google Scholar 

  • Bollard EG (1970) The physiology and nutrition of developing fruits. In: Hulme AC (ed) The biochemistry of fruit and their products, vol 1. Academic, London, pp 387–425

    Google Scholar 

  • Boonkorkaew P, Hikosaka S, Sugiyama N (2008) Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber. Sci Hortic 116:1–7

    CAS  Google Scholar 

  • Bradley MV, Crane JC (1955) The effect of 2,4,5-trichlorophenoxyacetic acid on cell and nuclear size and endopolyploidy in parenchyma of apricot fruits. Am J Bot 42:273–281

    CAS  Google Scholar 

  • Brecht JK, Chau KV, Fonseca SC, Oliveira FAR, Silva FM, Nunes MCN, Bender RJ (2003) Maintaining optimal atmosphere conditions for fruits and vegetables throughout the postharvest handling chain. Postharvest Biol Technol 27:87–101

    Google Scholar 

  • Bryant JA, Francis D (2008) Initiation of DNA replication In: Bryant JA, Francis D (eds) The eukaryotic cell cycle. Taylor and Francis, Abingdon, UK, pp 29–44

    Google Scholar 

  • Bünger-Kibler S, Bangerth F (1982) Relationship between cell number, cell size and fruit size of seeded fruits of tomato (Lycoperpsicon esculentum Mill.), and those induced parthenocarpically by the application of plant growth regulators. Plant Growth Regul 1:143–154

    Google Scholar 

  • Cano-Medrano R, Darnell RL (1997) Cell number and cell size in parthenocarpic vs. pollinated Blueberry (Vaccinium ashei) fruits. Ann Bot 80:419–425

    Google Scholar 

  • Capron A, Okrész L, Genschik P (2003) First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase. Trends Plant Sci 8:83–89

    PubMed  CAS  Google Scholar 

  • Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217:726–735

    PubMed  CAS  Google Scholar 

  • Carvalheira GMG (2000) Plant polytene chromosomes. Genet Mol Biol 3:1043–1050

    Google Scholar 

  • Castellano MM, del Pozo JC, Ramirez-Parra E, Brown S, Gutierrez C (2001) Expression and stability of Arabidopsis CDC6 are associated with endoreduplication. Plant Cell 13:2671–2686

    PubMed  CAS  Google Scholar 

  • Castellano MM, Boniotti MB, Caro E, Schnittger A, Gutierrez C (2004) DNA replication licensing affects cell proliferation or endoreplication in a cell type–specific manner. Plant Cell 16:2380–2393

    CAS  Google Scholar 

  • Cebolla A, Vinardell JM, Kiss E, Olah B, Roudier F, Kondorosi A, Kondorosi E (1999) The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants. EMBO J 18:4476–4484

    PubMed  CAS  Google Scholar 

  • Ceccarelli M, Sanantonio E, Marmottini F, Amzallag GN, Cionini PG (2006) Chromosome endoreduplication as a factor of salt adaptation in Sorghum bicolor. Protoplasma 227:113–118

    PubMed  CAS  Google Scholar 

  • Cheniclet C, Rong WY, Causse M, Bolling L, Frangne N, Carde JP, Renaudin JP (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994

    PubMed  CAS  Google Scholar 

  • Chevalier C (2007) Cell cycle control and fruit development. In: Inzé D (ed) Cell cycle control and plant development. Annual plant reviews, vol 32. Blackwell, Oxford, pp 269–293

    Google Scholar 

  • Cong B, Liu J, Tanksley SD (2002) Natural alleles of a tomato QTL modulate fruit size through heterochronic regulatory mutations. Proc Natl Acad Sci U S A 99:13606–13611

    PubMed  CAS  Google Scholar 

  • Cookson SJ, Radziejwoski A, Granier C (2006) Cell and leaf size plasticity in Arabidopsis: what is the role of endoreduplication? Plant Cell Environ 29:1273–1283

    PubMed  Google Scholar 

  • Coombe B (1976) The development of fleshy fruits. Annu Rev Plant Physiol 27:507–528

    Google Scholar 

  • Cowan AK, Taylor NJ, van Staden J (2005) Hormone homeostasis and induction of the small-fruit phenotype in a “Hass” avocado. Plant Growth Regul 45:11–19

    CAS  Google Scholar 

  • Crane JC (1964) Growth substances in fruit setting and development. Annu Rev Plant Physiol 15:303–326

    CAS  Google Scholar 

  • Cruz-Castillo JG, Woolley DJ, Lawes GS (2002) Kiwifruit size and CPPU response are influenced by the time of anthesis. Sci Hortic 95:23–30

    CAS  Google Scholar 

  • D'Amato F (1984) Role of polyploidy in reproductive organs and tissues. In: Johri BM (ed) Embryology of Angiosperms. Springer, New York, pp 519–566

    Google Scholar 

  • D'Aoust MA, Yelle S, Nguyen-Quoc B (1999) Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11:2407–2418

    PubMed  Google Scholar 

  • De Schutter K, Joubès J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inzé D, De Veylder L (2007) Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:211–25

    PubMed  Google Scholar 

  • De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudits M, Inzé D (2001) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1–15

    Google Scholar 

  • De Veylder L, Beeckman T, Beemster GTS, de Almeida Engler J, Ormenese S, Maes S, Naudts M, Van Der Schueren E, Jaqmard A, Engler G, Inzé D (2002) Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-DPa transcription factor. EMBO J 21:1360–1368

    PubMed  Google Scholar 

  • De Veylder L, Beeckman T, Inzé D (2007) The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol 8:655–665

    PubMed  Google Scholar 

  • DeJong T, Goudriaan J (1989) Modeling peach fruit growth and carbohydrate requirements: reevaluation of the double-sigmoid growth pattern. J Am Soc Hortic Sci 114:800–804

    Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306

    PubMed  CAS  Google Scholar 

  • Fang Y, Spector DL (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol Biol Cell 16:5710–5718

    PubMed  CAS  Google Scholar 

  • Ferrandiz C (2002) Regulation of fruit dehiscence in Arabidopsis. J Exp Bot 53:2031–2038

    PubMed  CAS  Google Scholar 

  • Ferrandiz C, Pelaz S, Yanofsky MF (1999) Control of carpel and fruit development in Arabidopsis. Annu Rev Biochem 68:321–354

    PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo D, van der Knapp E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    PubMed  CAS  Google Scholar 

  • Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    PubMed  CAS  Google Scholar 

  • Gendreau E, Höfte H, Grandjean O, Brown S, Traas J (1998) Phytochrome controls the number of endoreduplication cycles in the Arabidopsis thaliana hypocotyl. Plant J 13:221–230

    PubMed  CAS  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    PubMed  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    PubMed  CAS  Google Scholar 

  • Giovannoni J (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    PubMed  CAS  Google Scholar 

  • Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM (2006) Auxin response factor8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18:1873–1886

    PubMed  CAS  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:351–366

    PubMed  CAS  Google Scholar 

  • Gonzalez N, Hernould M, Delmas F, Gévaudant F, Duffe P, Causse M, Mouras A, Chevalier C (2004) Molecular characterization of a WEE1 gene homologue in tomato (Lycopersicon esculentum Mill.). Plant Mol Biol 56:849–861

    PubMed  CAS  Google Scholar 

  • Gonzalez N, Gévaudant F, Hernould CC, Mouras A (2007) The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J 51:642–655

    PubMed  CAS  Google Scholar 

  • Gray JD, Kolesik P, Hoj PB, Coombe BG (1999) Confocal measurement of the three-dimensional size and shape of plant parenchyma cells in a developing fruit tissue. Plant J 19:229–236

    PubMed  Google Scholar 

  • Gutierrez C, Ramirez-Parra E, Mar Castellano M, del Pozo JC (2002) G1 to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol 5:480–486

    PubMed  CAS  Google Scholar 

  • Hamada K, Hasegawa K, Ogata T (2008) Strapping and a synthetic cytokinin promote cell enlargement in ‘Hiratanenashi’ Japanese persimmon. Plant Growth Regul 54:225–230

    CAS  Google Scholar 

  • Harada T, Kurahashi W, Yanai M, Wakasa Y, Satoh T (2005) Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species. Sci Hortic 105:447–456

    CAS  Google Scholar 

  • Hase Y, Trung KH, Matsunaga T, Tanaka A (2006) A mutation in the uvi4 gene promotes progression of endoreduplication and confers increased tolerance towards ultraviolet B light. Plant J 46:317–326

    PubMed  CAS  Google Scholar 

  • Higashi K, Hosoya K, Ezura H (1999) Histological analysis of fruit development between two melon (Cucumis melo L. reticulatus) genotypes setting a different size of fruit. J Exp Bot 50:1593–1597

    CAS  Google Scholar 

  • Ho L (1992) Fruit growth and sink strength. In Marshall C and Grace J (eds) Fruit and seed production. Aspect of development, environmental physiology and ecology. Cambridge University Press, Cambridge, pp 101–124

    Google Scholar 

  • Ho LC (1996) The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. J Exp Bot 47:1239–1243

    PubMed  CAS  Google Scholar 

  • Hopping ME (1976) Structure and development of fruit and seeds in chinese gooseberry (Actinidia chinensis Planch.). N Z J Bot 14:63–68

    Google Scholar 

  • Imai KK, Ohashi Y, Tsuge T, Yoshizumi T, Matsui M, Oka A, Aoyama T (2006) The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication. Plant Cell 18:382–396

    PubMed  CAS  Google Scholar 

  • Inzé D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105

    PubMed  Google Scholar 

  • John PCL, Qi R (2008) Cell division and endoreduplication: doubtful engines of vegetative growth. Trends Plant Sci 13:121–127

    PubMed  CAS  Google Scholar 

  • Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latche A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613

    PubMed  CAS  Google Scholar 

  • Joubès J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:737–747

    Google Scholar 

  • Joubès J, Phan T-H, Just D, Rothan C, Bergounioux C, Raymond P, Chevalier C (1999) Molecular and biochemical characterization of the involvement of Cyclin-dependent kinase CDKA during the early development of tomato fruit. Plant Physiol 121:857–869

    PubMed  Google Scholar 

  • Joubès J, Chevalier C, Dudits D, Heberle-Bors E, Inzé D, Umeda M, Renaudin J-P (2000) Cyclin-dependent kinases related protein kinases in plants. Plant Mol Biol 43:607–621

    PubMed  Google Scholar 

  • Kano Y (2007) Comparison of Cell Size and Kind of Sugars Accumulated in Grape Berries vs Melon Fruits. Environ Control Biol 45:95–101

    CAS  Google Scholar 

  • Kato N, Lam E (2003) Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J Cell Sci 116:2195–2201

    PubMed  CAS  Google Scholar 

  • Kelly TJ, Brown GW (2000) Regulation of chromosome replication. Annu Rev Biochem 69:829–880

    PubMed  CAS  Google Scholar 

  • Kladnik A, Chourey PS, Pring DR, Dermastia M (2006) Development of the endosperm of Sorghum bicolor during the endoreduplication-associated growth phase. J Cereal Sci 43:209–215

    CAS  Google Scholar 

  • Knapp S (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Bot 53:2001–2022

    PubMed  CAS  Google Scholar 

  • Kondorosi E, Kondorosi A (2004) Endoreduplication and activation of the anaphase-promoting complex during symbiotic cell development. FEBS Lett 567:152–157

    PubMed  CAS  Google Scholar 

  • Kowles RV, Phillips RL (1985) DNA amplification patterns in maize endosperm nuclei during kernel development. Proc Natl Acad Sci USA 82:7010–7014

    PubMed  CAS  Google Scholar 

  • Kowles RV, Srienc F, Phillips RL (1990) Endoreduplication of nuclear DNA in the developing maize endosperm. Dev Genet 11:125–132

    CAS  Google Scholar 

  • Kudo N, Kimura Y (2002) Nuclear DNA endoreduplication during petal development in cabbage: relationship between ploidy levels and cell size. J Exp Bot 53:1017–1023

    PubMed  CAS  Google Scholar 

  • Kwiatkowska M, Popłonska K, Kazmierczak A, Stepinski D, Rogala K, Polewczyk K (2007) Role of DNA endoreduplication, lipotubuloids, and gibberellic acid in epidermal cell growth during fruit development of Ornithogalum umbellatum. J Exp Bot 58:2023–2031

    PubMed  CAS  Google Scholar 

  • Lammens T, Boudolf V, Kheibarshekan L, Panagiotis Zalmas L, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue NB, Govaerts W, Inze D, De Veylder L (2008) Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc Nat Acad Sci U S A 105:14721–14726

    CAS  Google Scholar 

  • Larkin JC, Brown ML, Churchman ML (2007) Insights into he endocycle from trichome development. In: Inzé D (ed) Cell cycle control and plant development. Annual plant reviews, vol 32. Blackwell, Oxford, pp 249–268

    Google Scholar 

  • Lee HC, Chiou DW, Chen WH, Markhart AH, Chen YH, Lin TY (2004) Dynamics of cell growth and endoreduplication during orchid flower development. Plant Sci 166:659–667

    CAS  Google Scholar 

  • Leiva-Neto JT, Grafi G, Sabelli PA, Dante RA, Woo YM, Maddock S, Gordon-Kamm WJ, Larkins BA (2004) A dominant negative mutant of Cyclin-Dependent Kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell 16:1854–1869

    PubMed  CAS  Google Scholar 

  • Lemaire-Chamley M, Petit J, Garcia V, Just D, Baldet P, Germain V, Fagard M, Mouassite M, Cheniclet C, Rothan C (2005) Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol 139:292–299

    Google Scholar 

  • Lemontey C, Mousset-Declas C, Munier-Jolain N, Boutin JP (2000) Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed. J Exp Bot 51:167–175

    PubMed  CAS  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451

    PubMed  CAS  Google Scholar 

  • List A (1963) Some observations on DNA content and cell and nuclear volume growth in the developing xylem cells of certain higher plants. Am J Bot 50:320–329

    CAS  Google Scholar 

  • Liu J, Cong B, Tanksley SD (2003) Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol 132:292–299

    PubMed  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5:1383–1399

    PubMed  CAS  Google Scholar 

  • Lukaszewska E, Sliwinska E (2007) Most organs of sugar-beet (Beta vulgaris L.) plants at the vegetative and reproductive stages of development are polysomatic. Sexual Plant Reprod 20:99–107

    Google Scholar 

  • Martí C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52:865–876

    PubMed  Google Scholar 

  • Mazzucato A, Taddei AR, Soressi GP (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125:107–114

    PubMed  CAS  Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668

    PubMed  Google Scholar 

  • Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173

    PubMed  CAS  Google Scholar 

  • Mizukami Y (2001) A matter of size: developmental control of organ size in plants. Curr Opin Plant Biol 4:533–539

    PubMed  CAS  Google Scholar 

  • Mohr WP, Stein M (1969) Fine structure of fruit development in tomato. Can J Plant Sci 49:549–553

    Google Scholar 

  • Mounet F, Moing A, Garcia V, Petit J, Maucourt M, Deborde C, Bernillon S, Le Gall G, Colquhoun I, Defernez M, Giraudel JL, Rolin D, Rothan C, Lemaire-Chamley M (2009) Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol 149:1505–1528

    PubMed  CAS  Google Scholar 

  • Nagl W (1976) DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261:614–645

    PubMed  CAS  Google Scholar 

  • Nenno M, Schumann K, Nagl W (1994) Detection of rRNA and phaseolin genes on polytene chromosomes of Phaseolus coccineus by fluorescence in situ hybridization after pepsin pretreatment. Genome 37:1018–1021

    PubMed  CAS  Google Scholar 

  • Nitsch JP (1953) The physiology of fruit growth. Annu Rev Plant Physiol 4:199

    Google Scholar 

  • Nitsch JP (1965) Physiology of flower and fruit development. In: Ruhland W (ed) Encyclopedia of plant physiology. Springer, Berlin, Heidelberg, New York, pp 1537–1647

    Google Scholar 

  • Nitsch JP (1970) Hormonal factors in growth and development. In: Hulme AC (ed) The biochemistry of fruits and their products 2. Academic, London, pp 427–472

    Google Scholar 

  • Ognjanov V, Vujanic-Varga D, Misic PD, Veresbaranji I, Macet K, Tesovic Z, Krstic M, Petrovic N (1995) Anatomical and biochemical studies of fruit development in peach. Sci Hort 64:33–48

    Google Scholar 

  • Ojeda H, Deloire A, Carbonneau A, Ageorges A, Romieu C (1999) Berry development of grapevines: Relations between the growth of berries and their DNA content indicate cell multiplication and enlargement. Vitis 38:145–150

    Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    PubMed  CAS  Google Scholar 

  • Ozga JA, van Huizen R, Reinecke DM (2002) Hormone and seed-specific regulation of pea fruit growth. Plant Physiol 128:1379–1389

    PubMed  CAS  Google Scholar 

  • Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329

    PubMed  CAS  Google Scholar 

  • Park JA, Ahn JW, Kim YK, Kim SJ, Kim JK, Kim WT, Pai HS (2005) Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J 42:153–163

    PubMed  CAS  Google Scholar 

  • Roeder AHK, Yanofsky MF (2006) Fruit development in Arabidopsis. The Arabidopsis Book 52:1–50

    Google Scholar 

  • Rygol J, Lüttge U (1983) Water-relation parameters of giant and normal cells of Capsicum annuum pericarp. Plant Cell Environ 6:545–553

    Google Scholar 

  • Schlosser J, Olsson N, Weis M, Reid K, Peng F, Lund S, Bowen P (2008) Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma 232:255–265

    PubMed  CAS  Google Scholar 

  • Schnittger A, Weinl C, Bouyer D, Schöbinger U, Hülskamp M (2003) Misexpression of the cyclin-dependent kinase inhibitor ICK1/KRP1 in single-celled Arabidopsis trichomes reduces endoreduplication and cell size and induces cell death. Plant Cell 15:303–315

    PubMed  CAS  Google Scholar 

  • Schubert V, Klatte M, Pecinka A, Meister A, Jasencakova Z, Schubert I (2006) Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics 172:467–475

    PubMed  CAS  Google Scholar 

  • Serrani J, Ruiz-Rivero O, Fos M, Garcia-Martinez JM (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:922–934

    PubMed  CAS  Google Scholar 

  • Sesek P, Kump B, Bohanec B (2005) Interphase structure of endoreduplicated nuclei in diploid and tetraploid Brassica oleracea L. Acta Biol Cracov Ser Bot 47:93–99

    Google Scholar 

  • Shimotohno A, Umeda M (2007) CDK phosphorylation. In: Inzé D (ed) Cell cycle control and plant development, Annual Plant Reviews, vol 32. Blackwell, Oxford, pp 114–137

    Google Scholar 

  • Smith O (1935) Pollination and life-history studies of the tomato (Lycopersicon esculentum Mill.). Cornell Univ Agric Exp Stn Mem 184:3–16

    Google Scholar 

  • Soliva-Fortuny RC, Martin-Belloso O (2003) New advances in extending the shelf-life of fresh-cut fruits: a review. Trends Food Sci Technol 14:341–353

    CAS  Google Scholar 

  • Sorrell DA, Marchbank A, McMahon K, Dickinson JR, Rogers HJ, Francis D (2002) A WEE1 homologue from Arabidopsis thaliana. Planta 215:518–522

    PubMed  CAS  Google Scholar 

  • Srivastava A, Handa AK (2005) Hormonal regulation of tomato fruit development: a molecular perspective. J Plant Growth Regul 24:67–82

    CAS  Google Scholar 

  • Stern RA, Flaishman M, Applebaum S, Ben-Arie R (2007) Effect of synthetic auxins on fruit development of `Bing' cherry (Prunus avium L.). Sci Hortic 114:275–280

    CAS  Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:544–553

    PubMed  CAS  Google Scholar 

  • Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, Lowe KS, JUNG R, Gordon-Kamm WJ, Larkins BA (1999) Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc Nat Acad Sci U S A 96:4180–4185

    CAS  Google Scholar 

  • Suutarinen J, Änäkäinen L, Autio K (1998) Comparison of Light Microscopy and Spatially Resolved Fourier Transform Infrared (FT-IR) Microscopy in the Examination of Cell Wall Components of Strawberries. Lebensm Wiss Technol 31:595–601

    CAS  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    PubMed  CAS  Google Scholar 

  • Varga A, Bruinsma J (1986) Tomato. In: Monselise SP (ed) CRC Handbook of fruit set and development. CRC, Boca Raton, FL, pp 461–480

    Google Scholar 

  • Verkest A, Weinl C, Inzé D, De Veylder L, Schnittger A (2005a) Switching the cell cycle. Kip-related proteins in plant cell cycle control. Plant Physiol 139:1099–1106

    PubMed  CAS  Google Scholar 

  • Verkest A, de Manes CLO, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, Genschik P, Kuiper M, Inzé D, De Veylder L (2005a) The Cyclin-Dependent Kinase inhibitor KRP2 controls the onset of endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. Plant Cell 17:1723–1736

    Google Scholar 

  • Vinardell JM, Fedorova E, Cebolla A, Kevei Z, Horvath G, Kelemen Z, Tarayre S, Roudier F, Mergaert P, Kondorosi A, Kondorosi E (2003) Endoreduplication mediated by the Anaphase-Promoting Complex Activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules. Plant Cell 15:2093–2105

    PubMed  CAS  Google Scholar 

  • Vivian-Smith A, Koltunow AM (1999) Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiol 121:437–451

    PubMed  CAS  Google Scholar 

  • Vlieghe K, Boudolf V, Beemster GTS, Maes S, Magyar Z, Atanassova A, de Almeida Engler J, De Groodt R, Inzé D, De Veylder L (2005) The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr Biol 15:59–63

    PubMed  CAS  Google Scholar 

  • Vlieghe K, Inzé D, De Veylder L (2007) Physiological relevance and molecular control of the endocycle in plants. In: Inzé D (ed) Cell cycle control and Plant development. Annual plant reviews, vol 32. Blackwell, Oxford, pp 227–248

    Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76

    PubMed  CAS  Google Scholar 

  • Wang H, Zhou Y, Gilmer S, Whitwill S, Fowke LC (2000) Expression of the cyclin-dependent protein kinase inhibitor ICK1 affects cell division, plant growth and morphology. Plant J 24:613–623

    PubMed  CAS  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech J-C, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    PubMed  CAS  Google Scholar 

  • Weinl C, Marquardt S, Kuijt SJH, Nowack MK, Jakoby MJ, Hülskamp M, Schnittger A (2005) Novel functions of plant Cyclin-Dependent Kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. Plant Cell 17:1704–1722

    PubMed  CAS  Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16:S133–S141

    PubMed  CAS  Google Scholar 

  • Yu Y, Steinmetz A, Meyer D, Brown S, Shen WH (2003) The tobacco A-type cyclin, Nicta;CycA2;3, at the nexus of cell division and differentiation. Plant Cell 15:2763–2777

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Part of the research described in this chapter was supported by the 6th Framework Program of the European Commission, within the European Solanaceae Integrated project, EU-SOL (grant no. FOOD-CT-2006-016214), and by fundings from the Region Aquitaine. M. B., E.M.-R. and M.N. were supported respectively by grants n°26855-2007, n°19061-2005 and n°24220–2006 from the Ministère de l’Enseignement Supérieur et de la Recherche (France).

We express our deepest thanks to Dr Theresa Barreneche and Dr Hélène Christmann (Research Unit 419 on Fruit Species, INRA Bordeaux, France), for having provided fruit samples of 25 varieties from the Prunus species and the corresponding data for bloom and maturity time. The Prunus species are conserved in the Prunus, Castanea, Juglans Genetic Resources Centre of INRA Bordeaux.

Dr Spencer Brown and Olivier Catrice (Plant Science Institute, UPR 2355, CNRS, Gif-sur-Yvette, France) are acknowledged for flow cytometry sorting of tomato nuclei and helpful discussions, and Dr Olivier Coriton (Plant Cytogenetics Plateform, INRA Le Rheu, France) for his precious help in performing FISH analyses.

We acknowledge the excellent technical assistance from Valérie Rouyère. Part of the cytological work was done on the Imaging Cytology facility (Plateau Technique Imagerie Cytologie, IFR103) at INRA Bordeaux with the help of Martine Peypelut for confocal image acquisition of hybridized nuclei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Chevalier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bourdon, M. et al. (2010). Endoreduplication and Growth of Fleshy Fruits. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 71. Progress in Botany, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02167-1_4

Download citation

Publish with us

Policies and ethics