Skip to main content

Re-Evaluation of Allometry: State-of-the-Art and Perspective Regarding Individuals and Stands of Woody Plants

  • Chapter
  • First Online:
Progress in Botany 71

Part of the book series: Progress in Botany ((BOTANY,volume 71))

Abstract

Allometry, in its broader sense, is concerned with the size of organisms and its consequences for their shape and functioning. Since the postulation of the allometric equation in the 1930s, allometry, in a narrow sense, refers to analysis and modelling of logarithmic transformed bivariate size data by linear regression techniques.

This chapter first points out that allometric research built up a valuable set of hypotheses and biometrical methods for analysing size of organisms and its consequences for their shape and functioning. Then, a summary of the knowledge about allometry of woody plants and populations will unmask the search for overarching general allometric exponents of shape and form development largely as a hunt for a phantom. Tree size development and self-thinning processes in forest stands give evidence that allometric exponents certainly lie in a narrow corridor, but are species specific and superimposed by site conditions, mechanical disturbances, competition, and other types of stress. The discussion states that as long as allometry searches for universal constants to a certain extent, it stills our innate desire to reduce complexity and generalise. However, time is ready to focus on and understand the differences between the species, sites etc. in order to contribute to a better system of understanding. It is concluded that allometry has to draw attention both to the internal size-driven allometric partitioning process and to the external factors, which determine optimal biomass allocation. And at best, allometric research should analyse both factors in order to understand and integrate them. A systematic analysis, ordering and causal explanation of allometric exponents, which reflects an individuals’ tricks and traits of optimising fitness, may provide an important link between plant genetics, physiology, plant biology and population biology. In contrast, application of inaccurate and imprecise general scaling rules can cause considerable flaws in modelling, prognosis and ecosystem management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assmann E, Franz F (1965) Vorläufige Fichten-Ertragstafel für Bayern. Forstw Cbl 84(1):13–43

    Article  Google Scholar 

  • Bégin E, Bégin J, Bélanger L, Rivest L-P, Tremblay S (2001) Balsam fir self-thinning relationship and its constancy among different ecological regions. Can J For Res 31:950–959

    Article  Google Scholar 

  • Begon ME, Harper JL, Townsend CR (1998) Ökologie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Blake J, Somers G, Ruark G (1991) Estimating limiting foliar biomass in conifer plantations from allometric relationships and self-thinning behaviours. For Sci 37:296–307

    Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants–an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Comeau PG, Kimmins JP (1989) Above- and below-ground biomass and production of Lodgepole pine on sites with differing soil moisture regimes. Can J For Res 19:447–454

    Google Scholar 

  • del Río M, Montero G, Bravo F (2001) Analysis of diameter-density relationships and self-thinning in non-thinned even-aged Scots pine stands. For Ecol Manage 142:79–87

    Article  Google Scholar 

  • Ducey MJ, Larson BC (1999) Accounting for bias and uncertainty in nonlinear stand density indices. For Sci 45(3):452–457

    Google Scholar 

  • Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660

    Article  PubMed  CAS  Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    Article  CAS  Google Scholar 

  • Enquist BJ, West GB, Charnov EL, Brown JH (1999) Allometric scaling of production and life-history variation in vascular plants. Nature 401:907–911

    Article  CAS  Google Scholar 

  • Ford ED (1975) Competition and stand structure in some even-aged plant monocultures. J Ecol 63:311–333

    Article  Google Scholar 

  • Gorham E (1979) Shoot height, weight and standing crop in relation to density of monospecific plant stands. Nature 279:148–150

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London, New York

    Google Scholar 

  • Hofman R, Ammer Ch (2008) Biomass partitioning of beech seedlings under the canopy of spruce. Aust J For Sci 125:51–66

    Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Lincoln Mac Veagh Dial, New York

    Google Scholar 

  • Kahn M (1994) Modellierung der Höhenentwicklung ausgewählter Baumarten in Abhängigkeit vom Standort. Forstl Forschungsber München 141

    Google Scholar 

  • Kimmins JP (1997) Forest ecology: a foundation for sustainable management, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Kira T, Ogawa H, Sakazaki N (1953) Intraspecific competition among higher plants, I. Competition-yield-density interrelationship in regularly dispersed populations. J Inst Polytech, Osaka City Univ Series D 4:1–16

    Google Scholar 

  • Kozlowski J, Konarzewski M (2004) Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct Ecol 18:283–289

    Article  Google Scholar 

  • Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11(9):1387–1401

    Article  Google Scholar 

  • Levy PE, Hale SE, Nicoll BC (2004) Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry 77(5):421–430

    Article  Google Scholar 

  • Long JN (1985) A practical approach to density management. For Chron 61:23–27

    Google Scholar 

  • Long JN, Smith FW (1984) Relation between size and density in developing stands: a description and possible mechanisms. For Ecol Manage 7:191–206

    Article  Google Scholar 

  • Matthew C, Lemaire G, Sackville Hamilton NR, Hernandez-Garay A (1995) A modified self-thinning equation to describe size/density relationships for defoliated swards. Ann Bot 76:579–587

    Article  Google Scholar 

  • McCarthy MC, Enquist BJ (2007) Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720

    Article  Google Scholar 

  • Meier IC, Leuschner Ch (2008) Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:1–15

    Article  Google Scholar 

  • Müller I, Schmid B, Weiner J (2000) The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Persp Plant Ecol Evol Syst 3(2):115–127

    Article  Google Scholar 

  • Murray DM, von Gadow K (1993) A flexible yield model for regional timber forecasting. South J Appl For 17(2):112–115

    Google Scholar 

  • Newton PF (1997) Stand density management diagrams: Review of their development and utility in stand-level management planning. Forest Eco Manage 98:251–265

    Article  Google Scholar 

  • Niklas KJ (1994) Plant allometry. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Oliver CD, Larson B (1996) Forest stand dynamics. Wiley, New York

    Google Scholar 

  • Pretzsch H (2000) Die Regeln von Reineke, Yoda und das Gesetz der räumlichen Allometrie. AFJZ 171(11):205–210

    Google Scholar 

  • Pretzsch H (2002) A unified law of spatial allometry for woody and herbaceous plants. Plant Biol 4(2):159–166

    Article  Google Scholar 

  • Pretzsch H (2005) Link between the self-thinning rules for herbaceous and woody plants. Sci Agric Bohemica 36(3):98–107

    Google Scholar 

  • Pretzsch H (2006) Species-specific allometric scaling under self-thinning. Evidence from long-tern plots in forest stands. Oecologia 146:572–583

    Article  PubMed  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Pretzsch H, Biber P (2005) A re-evaluation of Reineke’s rule and Stand Density Index. For Sci 51:304–320

    Google Scholar 

  • Pretzsch H, Mette T (2008) Linking stand-level self-thinning allometry to the tree-level leaf biomass allometry. Trees 22:611–622

    Article  Google Scholar 

  • Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands. Plant Biol 7:628–639

    Article  PubMed  CAS  Google Scholar 

  • Pretzsch H, Schütze G (2009) Trangressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: Evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204

    Google Scholar 

  • Pretzsch H, Biber P, Ďurský J (2002) The single tree based stand simulator SILVA. Construction, application and evaluation. Forest Eco Manage 162:3–21

    Article  Google Scholar 

  • Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S (2008) Models for forest ecosystem management: A European perspective. Ann Bot 101:1065–1087

    Article  PubMed  CAS  Google Scholar 

  • Pretzsch H, Dieler J, Matyssek R, Wipfler P (2009) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut (in press)

    Google Scholar 

  • Puettmann KJ, Hibbs DE, Hann DW (1992) The dynamics of mixed stands of Alnus rubra and Pseudotsuga menziesii: Extension of size-density analysis to species mixtures. J Ecol 80(3):449–458

    Article  Google Scholar 

  • Puettmann KJ, Hann DW, Hibbs DE (1993) Evaluation of the size-density relationship for pure red elder and Douglas-fir stands. For Sci 37:574–592

    Google Scholar 

  • Reich PB, Tjoelker MG, Machado J-L, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–461

    Article  PubMed  CAS  Google Scholar 

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Rubner M (1931) Die Gesetze des Energieverbrauchs bei der Ernährung. Proc preuß Akad Wiss Physik-Math Kl 16/18, Berlin, Wien

    Google Scholar 

  • Sackville Hamilton NR, Matthew C, Lemaire G (1995) In defence of the -3/2 boundary rule. Ann Bot 76:569–577

    Article  Google Scholar 

  • Schober R (1972) Die Rotbuche 1971. Schr Forstl Fak Univ Göttingen u Niedersächs Forstl Versuchsanst 43/44, JD Sauerländer’s Verlag, Frankfurt a. Main

    Google Scholar 

  • Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16:326–331

    Article  Google Scholar 

  • Smith RJ (1980) Rethinking allometry. J Theor Biol 87:97–111

    Article  PubMed  CAS  Google Scholar 

  • Sterba H (1975) Assmanns Theorie der Grundflächenhaltung und die “Competition-Density-Rule” der Japaner Kira, Ando und Tadaki. Cbl für das ges Forstw 92:46–62

    Google Scholar 

  • Sterba H (1981) Natürlicher Bestockungsgrad und Reinekes SDI. Cbl für das ges Forstw 98:101–116

    Google Scholar 

  • Sterba H (1987) Estimating potential density from thinning experiments and inventory data. For Sci 33(4):1022–1034

    Google Scholar 

  • Sterba H, Monserud RA (1993) The maximum density concept appled to uneven-aged mixed stands. For Sci 39:432–452

    Google Scholar 

  • Teissier G (1934) Dysharmonies et discontinuités dans la Croissance. Act Sci et Industr 95 (Exposés de Biometrie, 1), Hermann, Paris

    Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • van Hees AFM, Clerkx AP (2003) Shading and root–shoot relations in saplings of silver birch, pedunculate oak and beech. For Ecol Manage 176:439–448

    Article  Google Scholar 

  • von Bertalanffy L (1951) Theoretische Biologie: II. Band, Stoffwechsel, Wachstum, 2nd edn. A Francke AG, Bern

    Google Scholar 

  • von Gadow K (1986) Observation on self-thinning in pine plantations. S Afr J Sci 82:364–368

    Google Scholar 

  • von Gadow K, Franz F (1989) Studien zur Durchmesser-Stammzahl-Grenzbeziehung in Kiefern- und Eucylyptusbeständen Südafrikas. Forstarchiv 60(2):74–77

    Google Scholar 

  • Weetman G (2005) Partial cutting in the boreal: Some concerns, its history and its place in management, Lecture on workshop “Partial cutting in the eastern boreal forest: current knowledge and perspectives”. Univ of Quebéc at Temiskaming UQAT, Rouyn-Noranda, revised and updated Jan/05, UBC Vancouver, 29 pp

    Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6(4):207–215

    Article  Google Scholar 

  • Weller DE (1987) A reevaluation of the -3/2 power rule of plant self-thinning. Ecol Monogr 57:23–43

    Article  Google Scholar 

  • Weller DE (1990) Will the real self-thinning rule please stand up? A reply to Osawa and Sugita. Ecology 71:1204–1207

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • White J (1981) The allometric interpretation of the self-thinning rule. J Theor Biol 89:475–500

    Article  Google Scholar 

  • Whitfield J (2001) All creatures great and small. Nature 413:342–344

    Article  PubMed  CAS  Google Scholar 

  • Yoda KT, Kira T, Ogawa H, Hozumi K (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions. J Inst Polytech, Osaka Univ D 14:107–129

    Google Scholar 

  • Yoda KT, Shinozaki K, Ogawa J, Hozumi K, Kira T (1965). Estimation of the total amount of respiration in woody organs of trees and forest forest communities. J Biol Osaka City Univ 16:15–26

    Google Scholar 

  • Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manage 13:149–166

    Article  Google Scholar 

  • Zeide B (1987) Analysis of the 3/2 power law of self-thinning. For Sci 33:517–537

    Google Scholar 

  • Zeide B (2004) How to measure density. Trees 19:1–14

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the Deutsche Forschungsgemenischaft for providing funds for the Transregional Collaborative Research Centre 38 (SFB/TR 38) “Structure and process of the initial ecosystem development phase in an artificial water catchment” and the Bavarian state Ministry for Agriculture and Forestry for permanent support of the forest yield science project W 07. “Long-term experimental plots for growth and yield research”. Thanks are also due to Tobias Mette for constructive review of the text, Ulrich Kern for the graphical artwork, and anonymous reviewers, for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Pretzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pretzsch, H. (2010). Re-Evaluation of Allometry: State-of-the-Art and Perspective Regarding Individuals and Stands of Woody Plants. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 71. Progress in Botany, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02167-1_13

Download citation

Publish with us

Policies and ethics