Skip to main content

Lichen Systematics: The Role of Morphological and Molecular Data to Reconstruct Phylogenetic Relationships

  • Chapter
  • First Online:

Part of the book series: Progress in Botany ((BOTANY,volume 71))

Abstract

It took almost a century until Schwendener’s (1867) finding that lichens belong to the fungi finally led mycologists and lichenologists to include them in the fungal system (Nannfeldt 1932; Santesson 1952). Trying to elucidate the phylogenetic relationships between lichenized and un-lichenized fungi and among lichen taxa, based solely on morphological and chemical data, has proven to be a frustrating endeavour. Lichens display few taxonomically useful characters, of which many are widely variable; the homology of character states within and between groups is difficult to assess. Often, even the interpretation of morphological characters, e.g. types of ascoma development or ascus type, proved difficult (see e.g. Henssen and Jahns 1974; Lumbsch 2000; Lumbsch et al. 2001c; Ott and Lumbsch 2001; Stenroos et al. 2002b; Lumbsch and Huhndorf 2007). In the absence of well-supported and uncontroversial phylogenetic reconstructions based on morphological data, molecular data have, therefore, gained great importance in lichen systematics. The impact of molecular data on the classification and taxonomy of lichenized ascomycetes has been summarized regularly in recent years (Lumbsch 2000, 2007; Grube and Winka 2002; DePriest 2004). This review is not an attempt to update these previous comprehensive reviews. It rather tries to shed light on the relationship between results based on molecular and morphological studies of lichens. In the late 1980s and early 1990s, morphology-based taxonomy and systematics and molecular phylogenetics of lichens more or less led their own separate lives. The first studies based on molecular data often concentrated on reconstructing phylogenetic relationships and were not so much concerned with character evolution or the reinterpretation of morphological characters in light of molecular results. Likewise, a critical evaluation of the results in light of morphological data was rarely attempted. This has changed profoundly in recent years. Most phylogenetic reconstructions of lichenized ascomycetes are now designed to test morphology-based classifications. As a result, the systematic value of morphological characters in diverse groups is now much better understood than previously and reconstructions of character evolution exist for many systematic groups. On the other hand, classical taxonomists make increasing use of molecular data because classical lichen taxonomy is riddled with problems that only independent data from molecular analyses are likely to solve. One very obvious problem that is relatively easy to solve with molecular data concerns the systematic placement of obligately sterile lichens (Stenroos and DePriest 1998; Arup and Grube 1999; Platt and Spatafora 2000; Ekman and Tønsberg 2002; Crespo et al. 2004a) or other species with doubtful systematic affinities (Printzen and Kantvilas 2004; Lücking et al. 2007; Spribille et al. 2009). Other such problems arise from the multiple description of morphologically variable species, doubtful circumscriptions of taxa and erroneous assignment of species to them, or misinterpretation of the systematic value of characters due to incorrect homology hypotheses. In all these cases, molecular analyses offer promising tools to test traditional hypotheses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguileta G, Marthey S, Chiapello H, Lebrun MH, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Firaud T (2008) Assessing the performance of single-copy genes for recovering robust phylogenies. Syst Biol 57:613–627

    PubMed  CAS  Google Scholar 

  • Ahti T (2000) Cladoniaceae. Flora Neotropica Monogr 78:1–362

    Google Scholar 

  • Amtoft A, Lutzoni F, Miadlikowska J (2008) Dermatocarpon (Verrucariaceae) in the Ozark Highlands, North America. Bryologist 111:1–40

    Google Scholar 

  • Andersen HL, Ekman S (2004) Phylogeny of the Micareaceae inferred from nrSSU DNA sequences. Lichenologist 36:27–35

    Google Scholar 

  • Andersen HL, Ekman S (2005) Disintegration of the Micareaceae (lichenized Ascomycota): a molecular phylogeny based on mitochondrial rDNA sequences. Mycol Res 109:21–30

    PubMed  CAS  Google Scholar 

  • Aptroot A, Lücking R (2003) Phenotype-based phylogenetic analysis does not support generic separation of Gyalidea and Solorinella. Biblioth Lichenol 86:53–78

    Google Scholar 

  • Argüello A, Del Prado R, Cubas P, Crespo A (2007) Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biol J Linn Soc 91:455–467

    Google Scholar 

  • Articus K (2004) Neuropogon and the phylogeny of Usnea s.l. (Parmeliaceae, Lichenized Ascomycetes). Taxon 53:925–934

    Google Scholar 

  • Articus K, Mattsson JE, Tibell L, Grube M, Wedin M (2002) Ribosomal DNA and β-tubulin data do not support the separation of the lichens Usnea florida and U. subfloridana as distinct species. Mycol Res 106:412–418

    CAS  Google Scholar 

  • Arup U (2006) A new taxonomy of the Caloplaca citrina group in the Nordic countries, except Iceland. Lichenologist 38:1–20

    Google Scholar 

  • Arup U (2009) The Caloplaca holocarpa group in the Nordic countries, except Iceland. Lichenologist 41:111–130

    Google Scholar 

  • Arup U, Grube M (1998) Molecular systematics of Lecanora subgenus Placodium. Lichenologist 30:415–425

    Google Scholar 

  • Arup U, Grube M (1999) Where does Lecanora demissa (Ascomycota, Lecanorales) belong? Lichenologist 31:419–430

    Google Scholar 

  • Arup U, Grube M (2000) Is Rhizoplaca (Lecanorales, lichenized Ascomycota) a monophyletic genus? Can J Bot 78:318–327

    Google Scholar 

  • Arup U, Ekman S, Grube M, Mattsson JE, Wedin M (2007) The sister group relation of Parmeliaceae (Lecanorales, Ascomycota). Mycologia 99:42–49

    PubMed  CAS  Google Scholar 

  • Berbee ML, Carmean DA, Winka K (2000) Ribosomal DNA and resolution of branching order among the ascomycota: how many nucleotides are enough? Mol Phylogenet Evol 17:337–344

    PubMed  CAS  Google Scholar 

  • Bhattacharya D, Lutzoni F, Reeb V, Simon D, Nason J, Fernandez F (2000) Widespread occurrence of spliceosomal introns in the rDNA genes of ascomycetes. Mol Biol Evol 17:1971–1984

    PubMed  CAS  Google Scholar 

  • Bhattacharya D, Reeb V, Simon DM, Lutzoni F (2005) Phylogenetic analyses suggest reverse splicing spread of group I introns in fungal ribosomal DNA. BMC Evol Biol 5:68–78

    PubMed  Google Scholar 

  • Blaha J, Grube M (2007) The new species Lecanora bicinctoidea, its position and considerations about phenotypic evolution in the Lecanora rupicola group. Mycologia 99:50–58

    PubMed  CAS  Google Scholar 

  • Blanco O, Crespo A, Divakar PK, Esslinger TL, Hawksworth DL, Lumbsch HT (2004a) Melanelixia and Melanohalea, two new genera segregated from Melanelia (Parmeliaceae) based on molecular and morphological data. Mycol Res 108:873–884

    PubMed  CAS  Google Scholar 

  • Blanco O, Crespo A, Elix JA, Hawksworth DL, Lumbsch HT (2004b) A molecular phylogeny and a new classification of parmelioid lichens contaning Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53:959–975

    Google Scholar 

  • Blanco O, Crespo A, Divakar PK, Elix JA, Lumbsch HT (2005) Molecular phylogeny of parmotremoid lichens (Ascomycota, Parmeliaceae). Mycologia 97:150–159

    PubMed  CAS  Google Scholar 

  • Blanco O, Crespo A, Ree RH, Lumbsch HT (2006) Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Mol Phylogenet Evol 39:52–69

    PubMed  CAS  Google Scholar 

  • Brunauer G, Muggia L, Stocker-Wörgötter E, Grube M (2009) A transcribed polyketide synthase gene from Xanthoria elegans. Mycol Res 113:82–92

    PubMed  CAS  Google Scholar 

  • Buschbom J, Mueller GM (2004) Resolving evolutionary relationships in the lichen-forming genus Porpidia and related allies (Porpidiaceae, Ascomycota). Mol Phylogenet Evol 32:66–82

    PubMed  Google Scholar 

  • Buschbom J, Barker D (2006) Evolutionary history of vegetative reproduction in Porpidia s. l. (lichen-forming Ascomycota). Syst Biol 55:471–484

    PubMed  Google Scholar 

  • Buschbom J, Mueller GM (2006) Testing “species pair” hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Mol Biol Evol 23:574–586

    PubMed  CAS  Google Scholar 

  • Crespo A, Blanco O, Hawksworth DL (2001) The potential of mitochondrial DNA for establishing phylogeny and stabililsing generic concepts in the parmelioid lichens. Taxon 50:807–819

    Google Scholar 

  • Crespo A, Blanco O, Llimona X, Ferencová Z, Hawksworth DL (2004a) Coscinocladium, an overlooked endemic and monotypic Mediterranean lichen genus of Physciaceae, reinstated by molecular phylogenetic analysis. Taxon 53:405–414

    Google Scholar 

  • Crespo A, Divakar PK, Argüello A, Gasca C, Hawksworth DL (2004b) Molecular studies on Punctelia species of the Iberian Peninsula with an emphasis on specimens newly colonizing Madrid. Lichenologist 36:299–308

    Google Scholar 

  • Crespo A, Lumbsch HT, Mattsson JE, Blanco O, Divakar PK, Articus K, Wiklund E, Bawingan PA, Wedin M (2007) Testing moprphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Mol Phylogenet Evol 44:812–824

    PubMed  CAS  Google Scholar 

  • Crewe AT, Purvis OW, Wedin M (2006) Molecular phylogeny of Acarosporaceae (Ascomycota) with focus on the proposed genus Polysporinopsis. Mycol Res 110:521–526

    PubMed  CAS  Google Scholar 

  • Cubero OF, Crespo A, Esslinger TL, Lumbsch HT (2004) Molecular phylogeny of the genus Physconia (Ascomycota, Lecanorales) inferred from a Bayesian analysis of nuclear ITS rDNA sequences. Mycol Res 108:498–505

    PubMed  CAS  Google Scholar 

  • Del Prado R, Schmitt I, Kautz S, Palice Z, Lücking R, Lumbsch HT (2006) Molecular data place Trypetheliaceae in Dothideomycetes. Mycol Res 110:511–520

    PubMed  Google Scholar 

  • DePriest P (2004) Early molecular investigations of lichen-forming symbionts: 1986–2001. Annu Rev Microbiol 58:273–301

    PubMed  CAS  Google Scholar 

  • Diederich P, Lawrey JD (2007) New lichenicolous, muscicolous, corticolous and lignicolous taxa of Burgoa s. l. and Marchandiomyces s. l. (anamorphic Basidiomycota), a new genus for Omphalina foliaceae, and a catalogue and a key to the non-lichenized, bulbilliferous basidiomycetes. Mycol Progr 6:61–80

    Google Scholar 

  • Divakar PK, Blanco O, Hawksworth DL, Crespo A (2005a) Molecular phylogenetic studies on the Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the confirmation of P. pseudoreticulatum as a distinct species. Lichenologist 37:55–65

    Google Scholar 

  • Divakar PK, Molina MC, Lumbsch HT, Crespo A (2005b) Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. Lichenologist 37:37–46

    Google Scholar 

  • Divakar PK, Crespo A, Blanco O, Lumbsch HT (2006) Phylogenetic significance of morphological characters in the tropical Hypotrachyna clade of parmelioid lichens (Parmeliaceae, Ascomycota). Mol Phylogenet Evol 40:448–458

    PubMed  CAS  Google Scholar 

  • Divakar PK, Amo de Paz G, Del Prado R, Esslinger TL, Crespo A (2007) Upper cortex anatomy corroborates phylogenetic hypothesis in species of Physconia (Ascomycota, Lecanoromycetes). Mycol Res 111:1311–1320

    PubMed  CAS  Google Scholar 

  • Döring H, Henssen A, Wedin M (1999) Ascomata development in Neophyllis melacarpa, with notes on the systematic position of the genus. Aust J Bot 47:783–794

    Google Scholar 

  • Ekman S (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycol Res 105:783–797

    CAS  Google Scholar 

  • Ekman S, Jørgensen PM (2002) Towards a molecular phylogeny for the lichen family Pannariaceae (Lecanorales, Ascomycota). Can J Bot 80:625–634

    CAS  Google Scholar 

  • Ekman S, Tønsberg T (2002) Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon. Mycol Res 106:1262–1276

    Google Scholar 

  • Ekman S, Wedin M (2000) The phylogeny of the families Lecanoraceae and Bacidiaceae (lichenized Ascomycota) inferred from nuclear SSU rDNA sequences. Plant Biol 2:350–360

    CAS  Google Scholar 

  • Ekman S, Andersen HL, Wedin M (2008) The limitations of ancestral state reconstructions and the evolution of the ascus in the Lecanorales (lichenized Ascomycota). Syst Biol 57:141–156

    PubMed  CAS  Google Scholar 

  • Eriksson OE, Winka K (1997) Supraordinal taxa of Ascomycota. Myconet 1:1–16

    Google Scholar 

  • Ertz D, Lawrey JD, Sikaroodi M, Gillevet PM, Fischer E, Killmann D, Sérusiaux E (2008) A new lineage of lichenized Basidiomycetes inferred from a two-gene phylogeny: The Lepidostromataceae with three species from the tropics. Am J Bot 95:1548–1556

    CAS  Google Scholar 

  • Ertz D, Miadlikowska J, Lutzoni F, Dessein S, Raspe O, Vigneron N, Hofstetter V, Diederich P (2009) Towards a new classification of the Arthoniales (Ascomycota) based on a three-gene phylogeny focussing on the genus Opegrapha. Mycol Res 113:141–152

    PubMed  CAS  Google Scholar 

  • Fehrer J, Slaviková-Bayerová Š, Orange A (2008) Large genetic divergence of new, morphologicall similar species of sterile lichens from Europe (Lepraria, Stereocaulaceae, Ascomycota): concordance of DNA sequence data with secondary metabolites. Cladistics 24:443–458

    Google Scholar 

  • Feuerer T, Thell A (2002) Parmelia ernstiae–a new macrolichen from Germany. Mitt Inst Allg Bot Hamburg 30–32:49–60

    Google Scholar 

  • Fischer E, Ertz D, Killmann D, Sérusiaux E (2007) Two new species of Multiclavula (lichenized basidiomycetes) from savanna soils in Rwanda (East Africa). Bot J Linn Soc 155:457–465

    Google Scholar 

  • Frisch A, Kalb K, Grube M (2006) Molecular phylogeny of the Thelotremataceae. A study based on Bayesian analysis of mitochondrial 16S rDNA gene data. Biblioth Lichenol 92:517–539

    Google Scholar 

  • Gagunashvili AN, Davíðsson SP, Jónsson ZO, Andrésson ÓS (2009) Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea. Mycol Res 113:354–363

    PubMed  CAS  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origin of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495

    PubMed  CAS  Google Scholar 

  • Gaya E, Lutzoni F, Zoller S, Navarro-Rosines P (2003) Phylogenetic study of Fulgensia and allied Caloplaca and Xanthoria species (Teloschistaceae, lichen-forming Ascomycota). Am J Bot 90:1095–1103

    CAS  Google Scholar 

  • Gaya E, Navarro-Rosines P, Llimona X, Hladun N, Lutzoni F (2008) Phylogenetic reassessment of the Teloschistaceae (lichen-forming Ascomycota, Lecanoromycetes). Mycol Res 112:528–546

    PubMed  Google Scholar 

  • Geiser DM, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F, Hofstetter V, Fraker E, Schoch CL, Tibell L, Untereiner WA, Aptroot A (2006) Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98:1053–1064

    PubMed  Google Scholar 

  • Gierl C, Kalb K (1993) Die Flechtengattung Dibaeis. Eine Übersicht über die rosafrüchtigen Arten von Baeomyces sens. lat. nebst Anmerkungen zu Phyllobaeis gen. nov. Herzogia 9:593–645

    Google Scholar 

  • Gilenstam G (1969) Studies in the lichen genus Conotrema. Ark Bot Ser 2(7):149–179

    Google Scholar 

  • Goffinet B, Goward T (1998) Is Nephroma silvae-veteris the cyanomorph of Lobaria oregana? Insights from molecular, chemical and morphological characters. In: Glenn MC, Harris RC, Dirig R, Cole MS (eds) Lichenographia Thomsoniana: North American lichenology in honour of John W. Thomson. Mycotaxon, Ithaca, New York, pp 41–52

    Google Scholar 

  • Grube M (1998) Classification and phylogeny in the Arthoniales (lichenized Ascomycetes). Bryologist 101:377–391

    Google Scholar 

  • Grube M, Arup U (2001) Molecular and morphological evolution in the Physciaceae (Lecanorales, lichenized Ascomycotina), with special emphasis on the genus Rinodina. Lichenologist 33:63–72

    Google Scholar 

  • Grube M, Blaha J (2003) On the phylogeny of some polyketide synthase genes in the lichenized genus Lecanora. Mycol Res 107:1419–1426

    PubMed  CAS  Google Scholar 

  • Grube M, Hawksworth DL (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res 111:1116–1132

    PubMed  Google Scholar 

  • Grube M, Kantvilas G (2006) Siphula represents a remarkable case of morphological convergence in sterile lichens. Lichenologist 38:241–249

    Google Scholar 

  • Grube M, Winka K (2002) Progress in understanding the evolution and classification of lichenized ascomycetes. Mycologist 16:67–76

    Google Scholar 

  • Grube M, Baloch E, Lumbsch HT (2004a) The phylogeny of Porinaceae (Ostropomycetidae) suggests a neotenic origin of perithecia in Lecanoromycetes. Mycol Res 108:1111–1118

    PubMed  CAS  Google Scholar 

  • Grube M, Baloch E, Arup U (2004b) A phylogenetic study of the Lecanora rupicola group (Lecanoraceae, Ascomycota). Mycol Res 108:506–514

    PubMed  CAS  Google Scholar 

  • Gueidan C, Roux C, Lutzoni F (2007) Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycol Res 111:1145–1168

    PubMed  CAS  Google Scholar 

  • Gueidan C, Savić S, Thüs H, Roux C, Keller C, Tibell L, Prieto M, Heiðmarsson S, Breuss O, Orange A, Fröberg L, Wynns AA, Navarro-Rosines P, Krzewicka B, Pykälä J, Grube M, Lutzoni F (2009) Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon 58:184–208

    Google Scholar 

  • Guzow-Krzemińska B, Węgrzyn G (2003) A preliminary study on the phylogeny of the genus Melanelia using nuclear large subunit ribosomal DNA sequences. Lichenologist 35:83–86

    Google Scholar 

  • Hafellner J (1984) Studien in Richtung einer natürlicheren Gliederung der Sammelfamilien Lecanoraceae und Lecideaceae. Nova Hedwigia, Beih 79:241–371

    Google Scholar 

  • Hafellner J (1988) Principles of classification and main taxonomic groups. In: Galun M (ed) CRC Handbook of lichenology. CRC, Boca Raton, pp 41–52

    Google Scholar 

  • Hawksworth DL (1976) Lichen chemotaxonomy. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichen physiology and cell biology. Academic, London, pp 139–184

    Google Scholar 

  • Hawksworth DL (1988) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20

    Google Scholar 

  • Heiðmarsson S (2003) Molecular study of Dermatocarpon miniatum (Verrucariales) and allied taxa. Mycol Res 107:459–468

    Google Scholar 

  • Helms G, Friedl T, Rambold G (2003) Phylogenetic relationships of the Physciaceae inferred from rDNA sequence data and selected phenotypic characters. Mycologia 95:1078–1099

    PubMed  CAS  Google Scholar 

  • Henssen A, Jahns HM (1974) Lichenes. Eine Einführung in die Flechtenkunde, Thieme, Stuttgart

    Google Scholar 

  • Hertel H, Rambold G (1985) Lecidea sect. Armeniacae: lecideoide Arten der Flechtengattungen Lecanora und Tephromela (Lecanorales). Bot Jahrb Syst 107:469–501

    Google Scholar 

  • Hertel H, Rambold G (1995) On the genus Adelolecia (lichenized Ascomycotina, Lecanorales). Biblioth Lichenol 57:211–230

    Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Lumbsch HT, Lutzoni F, Matheny PB, MacLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Hinteregger E (1994) Krustenflechten auf den Rhododendron-Arten (Rh. ferruginuem und Rh. hirsutum) der Ostalpen. Biblioth Lichenol 55:1–346

    Google Scholar 

  • Högnabba F (2006) Molecular phylogeny of the genus Stereocaulon (Stereocaulaceae, lichenized ascomycetes). Mycol Res 110:1080–1092

    PubMed  Google Scholar 

  • Högnabba F, Wedin M (2003) Molecular phylogeny of the Sphaerophorus globosus complex. Cladistics 19:224–232

    Google Scholar 

  • Högnabba F, Stenroos S, Thell A, Myllys L (2009) Evolution of cyanobacterial symbioses in Ascomycota. Biblioth Lichenol 99:163–184

    Google Scholar 

  • Hofstetter V, Miadlikowska J, Kauff F, Lutzoni F (2007) Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota). Mol Phylogenet Evol 44:412–426

    PubMed  CAS  Google Scholar 

  • Holtan-Hartwig J (1993) The lichen genus Peltigera, exclusive of the P. canina group, in Norway. Sommerfeltia 15:1–77

    Google Scholar 

  • Ihlen PG, Ekman S (2002) Outline of phylogeny and character evolution in Rhizocarpon (Rhizocarpaceae, lichenized Ascomycota) based on nuclear ITS and mitochondrial SSU ribosomal DNA sequences. Biol J Linn Soc 77:535–546

    Google Scholar 

  • Ivanova NV, Hafellner J (2002) Searching for the correct placement of Megaspora by use of ITS1, 5.8S and ITS2 rDNA sequence data. Biblioth Lichenol 82:113–122

    Google Scholar 

  • James PW, Henssen A (1976) The morphology and taxonomic significance of cephalodia. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichen physiology and cell biology. Academic, London, pp 50–51

    Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    PubMed  CAS  Google Scholar 

  • Kärnefelt I, Thell A (2000) On the systematic position of the genus Cetrariella (Parmeliaceae: Ascomycotina) indicated by ITS rDNA data. Biblioth Lichenol 75:27–32

    Google Scholar 

  • Kalb K, Staiger B, Elix JA (2004) A monograph of the lichen genus Diorygma — a first attempt. Symb Bot Upsal 34(1):133–181

    Google Scholar 

  • Kalb K, Staiger B, Elix JA, Lange U, Lumbsch HT (2008) A new circumscription of the genus Ramboldia (Lecanoraceae, Ascomycota) based on morphological and molecular evidence. Nova Hedwigia 86:23–42

    Google Scholar 

  • Kasalicky T, Döring H, Rambold G, Wedin M (2000) A comparison of ITS and LSU nrDNA phylogenies of Fulgensia (Teloschistaceae, Lecanorales), a genus of lichenized ascomycetes. Can J Bot 78:1580–1589

    CAS  Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156

    PubMed  CAS  Google Scholar 

  • Körber GW (1855) Systema lichenum Germaniae. Eduard Trewendt und Granier, Breslau

    Google Scholar 

  • Körber GW (1865) Parerga Lichenologica. Eduard Trewendt, Breslau

    Google Scholar 

  • Kroken S, Taylor JW (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93:38–53

    CAS  Google Scholar 

  • Kruys Å, Eriksson OE, Wedin M (2006) Phylogenetic relationships of coprophilous Pleosporales (Dothideomycetes, Ascomycota), and the classification of some bitunicate taxa of unknown position. Mycol Res 110:527–536

    PubMed  CAS  Google Scholar 

  • LaGreca S (1999) A phylogenetic evaluation of the Ramalina americana chemotype complex (Lichenized Ascomycota, Ramalinaceae) based on rDNA ITS sequence data. Bryologist 102:602–618

    Google Scholar 

  • LaGreca S, Lumbsch HT (2001a) No evidence from rDNA ITS sequence data for a placement of Ramalinora in the Ramalinaceae. Lichenologist 33:172–176

    Google Scholar 

  • LaGreca S, Lumbsch HT (2001b) The phylogenetic position of the Candelariaceae (Lecanorales) inferred from anatomical and molecular data. Biblioth Lichenol 78:211–222

    Google Scholar 

  • Lamb IM (1977) A conspectus of the lichen genus Stereocaulon (Schreb.) Hoffm. J Hattori Bot Lab 44:209–250

    Google Scholar 

  • Lawrey JD, Binder M, Diederich P, Molina MC, Sikaroodi M, Ertz D (2007) Phylogenetic diversity of lichen-associated homobasidiomycetes. Mol Phylogenet Evol 44:778–789

    Google Scholar 

  • Lendemer JC, Lumbsch HT (2008) Protoparmelia capitata sp. nov., and P. isidiata Diederich, Aptroot and Sérus., two species of Protoparmelia (Lecanorales, Ascomycota) from south-eastern North America. Lichenologist 40:329–336

    Google Scholar 

  • Liew ECY, Aptroot A, Hyde KD (2000) Phylogenetic significance of the pseudoparaphyses in loculoascomycete taxonomy. Mol Phylogenet Evol 16:392–402

    PubMed  CAS  Google Scholar 

  • Lindblom L, Søchting U (2008) Taxonomic revision of Xanthomendoza borealis and Xanthoria mawsonii (Lecanoromycetes, Ascomycota). Lichenologist 40:399–409

    Google Scholar 

  • Lindemuth R, Wirtz N, Lumbsch HT (2001) Phylogenetic analysis of nuclear and mitochondrial rDNA sequences supports the view that loculoascomycetes (Ascomycota) are not monophyletic. Mycol Res 105:1176–1181

    CAS  Google Scholar 

  • Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci USA 101:4507–4512

    PubMed  CAS  Google Scholar 

  • Lohtander K, Myllys L, Sundin R, Källersjö M, Tehler A (1998a) The species pair concept in the lichen Dendrographa leucophaea (Arthoniales): analyses based on ITS sequences. Bryologist 101:404–411

    CAS  Google Scholar 

  • Lohtander K, Källersjö M, Tehler A (1998b) Dispersal strategies in Roccellina capensis (Arthoniales). Lichenologist 30:341–350

    Google Scholar 

  • Lohtander K, Källersjö M, Moberg R, Tehler A (2000) The family Physciaceae in Fennoscandia: phylogeny inferred from ITS sequences. Mycologia 92:728–735

    CAS  Google Scholar 

  • Lohtander K, Oksanen I, Rikkinen J (2002) A phylogenetic study of Nephroma (lichen-forming Ascomycota). Mycol Res 106:777–787

    CAS  Google Scholar 

  • Lücking R, Stuart BL, Lumbsch HT (2004) Phylogenetic relationships of Gomphillaceae and Asterothyriaceae: evidence from a combined Bayesian analysis of nuclear and mitochondrial sequences. Mycologia 96:283–294

    PubMed  Google Scholar 

  • Lücking R, Sérusiaux E, Vězda A (2005) Phylogeny and systematics of the lichen family Gomphillaceae (Ostropales) inferred from cladistic analysis of phenotypic data. Lichenologist 37:123–170

    Google Scholar 

  • Lücking R, Sipman HJM, Umaña L, Chaves JL, Lumbsch HT (2007) Aptrootia (Dothideomycetes: Trypetheliaceae), a new genus of pyrenocarpous lichens for Thelenella terricola. Lichenologist 39:187–193

    Google Scholar 

  • Lücking R, Del Prado R, Lumbsch HT, Will-Wolf S, Aptroot A, Sipman HJM, Umaña L, Chaves JL (2008a) Phylogenetic patterns of morphological and chemical characters and reproductive mode in the Heterodermia obscurata group in Costa Rica (Ascomycota, Physciaceae). Syst Biodivers 6:31–41

    Google Scholar 

  • Lücking R, Lumbsch HT, Di Stéfano JF, Lizano D, Carranza J, Bernecker A, Chaves JL, Umaña L (2008b) Eremithallus costaricensis (Ascomycota: Lichinomycetes: Eremothallales), a new fungal lineage with a novel lichen symbiotic lifestyle discovered in an urban relict forest in Costa Rica. Symbiosis 46:161–170

    Google Scholar 

  • Lumbsch HT (1997) Systematic studies in the suborder Agyriineae (Lecanorales). J Hattori Bot Lab 83:1–73

    Google Scholar 

  • Lumbsch HT (1998) Taxonomic use of metabolic data in lichen-forming fungi. In: Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy. Marcel Dekker, New York, pp 345–387

    Google Scholar 

  • Lumbsch HT (2000) Phylogeny of filamentous ascomycetes. Naturwissenschaften 87:335–342

    PubMed  CAS  Google Scholar 

  • Lumbsch HT (2007) Recent trends in phylogeny and classification of lichen-forming ascomycetes. In: Ganguli BN, Deshmukh SK (eds) Fungi: multifaceted microbes. Anamaya, Delhi, pp 153–168

    Google Scholar 

  • Lumbsch HT, Huhndorf S (2007) Whatever happened to the pyrenomycetes and loculoascomycetes? Mycol Res 111:1064–1074

    PubMed  Google Scholar 

  • Lumbsch HT, Schmitt I (2001) Molecular data suggest that the lichen genus Pertusaria is not monophyletic. Lichenologist 33:161–170

    Google Scholar 

  • Lumbsch HT, Schmitt I (2002) Molecular data shake the Pertusariaceae tree into order. Lichenology 1:37–43

    Google Scholar 

  • Lumbsch HT, Tehler A (1998) A cladistic study of the genus Diploschistes (Ascomycotina, Thelotremataceae). Bryologist 101:398–403

    Google Scholar 

  • Lumbsch HT, Lindemuth R, Schmitt I (2000) Evolution of filamentous ascomycetes inferred from SSU and LSU rDNA sequence data. Plant Biol 2:525–529

    CAS  Google Scholar 

  • Lumbsch HT, Schmitt I, Döring H, Wedin M (2001a) Molecular systematics supports the recognition of an additional order of Ascomycota: the Agyriales. Mycol Res 105:16–23

    Google Scholar 

  • Lumbsch HT, Schmitt I, Döring H, Wedin M (2001b) ITS sequence data suggest variability of ascus types and support ontogenetic characters as phylogenetic discriminators in the Agyriales (Ascomycota). Mycol Res 105:265–274

    CAS  Google Scholar 

  • Lumbsch HT, Schmitt I, Messuti MI (2001c) Utility of nuclear SSU and LSU rDNA data sets to discover the ordinal placement of the Coccotremataceae (Ascomycota). Org Divers Evol 1:99–112

    Google Scholar 

  • Lumbsch HT, Wirtz N, Lindemuth R, Schmitt I (2002) Higher level phylogenetic relationships of euascomycetes (Pezizomycotina) inferred from a combined analysis of nuclear and mitochondrial sequence data. Mycol Progr 1:57–70

    Google Scholar 

  • Lumbsch HT, Mangold A, Lücking R, García MA, Martín MP (2004a) Phylogenetic position of the genera Nadvornikia and Pyrgillus (Ascomycota) based on molecular data. Symb Bot Upsal 34(1):9–17

    Google Scholar 

  • Lumbsch HT, Schmitt I, Palice Z, Wiklund E, Ekman S, Wedin M (2004b) Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. Mol Phylogenet Evol 31:822–832

    PubMed  CAS  Google Scholar 

  • Lumbsch HT, Lindemuth R, Miller A, Mangold A, Fernandez F, Huhndorf S (2005a) Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta). Mol Phylogenet Evol 34:512–524

    PubMed  CAS  Google Scholar 

  • Lumbsch HT, del Prado R, Kantvilas G (2005b) Gregorella, a new genus to accomodate Moelleropsis humida and a molecular phylogeny of Arctomiaceae. Lichenologist 37:291–302

    Google Scholar 

  • Lumbsch HT, Schmitt I, Barker D, Pagel M (2006) Evolution of micromorphological and chemical characters in the lichen-forming fungal family Pertusariaceae. Biol J Linn Soc 89:615–626

    Google Scholar 

  • Lumbsch HT, Schmitt I, Lücking R, Wiklund E, Wedin M (2007a) The phylogenetic placement of Ostropales within Lecanoromycetes (Ascomycota) revisited. Mycol Res 111:257–267

    PubMed  Google Scholar 

  • Lumbsch HT, Schmitt I, Mangold A, Wedin M (2007b) Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). Mycol Res 111:1133–1141

    PubMed  CAS  Google Scholar 

  • Lumbsch HT, Archer AW, Elix JA (2007c) A new species of Loxospora (lichenized Ascomycota: Sarrameanaceae) from Australia. Lichenologist 39:509–517

    Google Scholar 

  • Lumbsch HT, Hipp AL, Divakar PK, Blanco O, Crespo A (2008a) Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol Biol 8:257–268

    PubMed  Google Scholar 

  • Lumbsch HT, Mangold A, Martín MP, Elix JA (2008b) Species recognition and phylogeny of Thelotrema species in Australia (Ostropales, Ascomycota). Aust Syst Bot 21:217–227

    Google Scholar 

  • Lumbsch HT, Nelsen MP, Lücking R (2008c) The phylogenetic position of Haematommataceae (Lecanorales, Ascomycota). Nova Hedwigia 86:105–111

    Google Scholar 

  • Lumbsch HT, Lücking R, Tibell L (2009) Molecular data place Tylophoron as an additional calicioid genus in the Arthoniales (Ascomycota). Biblioth Lichenol 99:285–296

    Google Scholar 

  • Lutzoni F (1997) Phylogeny of lichen- and non-lichen-forming omphalinoid mushrooms and the utility of testing for combinability among multiple data sets. Syst Biol 46:373–406

    PubMed  CAS  Google Scholar 

  • Lutzoni F, Pagel M (1997) Accelerated evolution as a consequence of transitions to mutualism. Proc Natl Acad Sci USA 94:11422–11427

    PubMed  CAS  Google Scholar 

  • Lutzoni F, Vilgalys R (1995a) Omphalina (Basidiomycota, Agaricales) as a model system for the study of coevolution in lichens. Crypt Bot 5:71–81

    Google Scholar 

  • Lutzoni F, Vilgalys R (1995b) Integration of morphological and molecular data sets in estimating fungal phylogenies. Can J Bot 73(S1):649–659

    Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    PubMed  CAS  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung GH, Lücking R, Lumbsch HT, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim YW, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: Progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Google Scholar 

  • Lynge B (1916) A monograph of the Norwegian Physciaceae. Videnskapsselsk Skr Mat Naturvidensk Kl 8:1–110

    Google Scholar 

  • Mangold A, Martín MP, Kalb K, Lücking R, Lumbsch HT (2008a) Molecular data show that Topeliopsis (Ascomycota, Thelotremataceae) is polyphyletic. Lichenologist 40:39–46

    Google Scholar 

  • Mangold A, Martín MP, Lücking R, Lumbsch HT (2008b) Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales). Taxon 57:476–486

    Google Scholar 

  • Martín MP, Winka K, Llimona X, Lumbsch HT (2000) Evaluation of morphological variation in the lichen Diploschistes ocellatus (Ascomycota, Ostropales): evidence from nuclear rDNA ITS sequence data. Plant Biol 2:571–578

    Google Scholar 

  • Martín MP, LaGreca S, Lumbsch HT (2003) Molecular phylogeny of Diploschistes inferred from ITS sequence data. Lichenologist 35:27–32

    Google Scholar 

  • Matheny PB, Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Yang ZL, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–995

    PubMed  Google Scholar 

  • Mattsson JE, Articus K (2004) The monophyletic groups of cetrarioid lichens. Symb Bot Upsal 34(1):237–244

    Google Scholar 

  • Mattsson JE, Lumbsch HT (1989) The use of the species pair concept in lichenology. Taxon 38:238–241

    Google Scholar 

  • Mattsson JE, Wedin M (1998) Phylogeny of the Parmeliaceae — DNA data versus morphological data. Lichenologist 30:463–472

    Google Scholar 

  • Mattsson JE, Wedin M (1999) A re-assessment of the family Alectoriaceae. Lichenologist 31:431–440

    Google Scholar 

  • McCune B, Schoch C (2009) Hypogymnia minilobata (Parmeliaceae), a new lichen from coastal California. Bryologist 112:94–100

    Google Scholar 

  • McDonald T, Miadlikowska J, Lutzoni F (2003) The lichen genus Sticta in the Great Smoky Mountains: a phylogenetic study of morphological, chemical, and molecular data. Bryologist 106:61–79

    CAS  Google Scholar 

  • Miadlikowska J, Lutzoni F (2000) Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA. Int J Plant Sci 161:925–958

    CAS  Google Scholar 

  • Miadlikowska J, Lutzoni F (2004) Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. Am J Bot 91:449–464

    CAS  Google Scholar 

  • Miadlikowska J, Lutzoni F, Goward T, Zoller S, Posada D (2003) New approach to an old problem: Incorporating signal from gap-rich regions of ITS and rDNA large subunit into phylogenetic analyses to resolve the Peltigera canina species complex. Mycologia 95:1181–1203

    PubMed  CAS  Google Scholar 

  • Miadlikowska J, Kauff F, Hofstetter V et al (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98:1088–1103

    PubMed  CAS  Google Scholar 

  • Molina MDC, Crespo A, Blanco O, Hladun N, Hawksworth DL (2002) Molecular phylogeny and status of Diploicia and Diplotomma, with observations on Diploicia subcanescens and Diplotomma rivas-martinezii. Lichenologist 34:509–519

    Google Scholar 

  • Molina MDC, Crespo A, Blanco O, Lumbsch HT, Hawksworth DL (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. Lichenologist 36:37–54

    Google Scholar 

  • Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305

    PubMed  CAS  Google Scholar 

  • Muggia L, Grube M, Tretiach M (2008a) Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenized Ascomycota). Mycol Progr 7:147–160

    Google Scholar 

  • Muggia L, Schmitt I, Grube M (2008b) Purifying selection is a prevailing motif in the evolution of ketoacyl synthase domains of polyketide synthases from lichenized fungi. Mycol Res 112:277–288

    PubMed  CAS  Google Scholar 

  • Muggia L, Hafellner J, Wirtz N, Hawksworth DL, Grube M (2008c) The sterile microfilamentous lichenized fungi Cystocoleus ebeneus and Racodium rupestre are relatives of plant pathogens and clinically important dothidealean fungi. Mycol Res 112:50–56

    PubMed  CAS  Google Scholar 

  • Muggia L, Grube M, Tretiach M (2008d) A combined molecular and morphological approach to species delimitation in black-fruited, endolithic Caloplaca: high genetic and low morphological diversity. Mycol Res 112:36–49

    PubMed  Google Scholar 

  • Myllys L, Källersjö M, Tehler A (1998) A comparison of SSU rDNA data and morphological data in Arthoniales (Euascomycetes) phylogeny. Bryologist 101:70–85

    CAS  Google Scholar 

  • Myllys L, Lohtander K, Källersjö M, Tehler A (1999a) Applicability of ITS data in Roccellaceae (Arthoniales, Euascomycetes) phylogeny. Lichenologist 31:461–476

    Google Scholar 

  • Myllys L, Lohtander K, Källersjö M, Tehler A (1999b) Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Mol Phylogenet Evol 12:295–309

    PubMed  CAS  Google Scholar 

  • Myllys L, Lohtander K, Tehler A (2001) β-tubulin: ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia 93:335–343

    CAS  Google Scholar 

  • Myllys L, Stenroos S, Thell A, Ahti T (2003) Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Mol Phylogenet Evol 27:58–69

    PubMed  CAS  Google Scholar 

  • Myllys L, Högnabba F, Lohtander K, Thell A, Stenroos S, Hyvönen J (2005) Phylogenetic relationships of Stereocaulaceae based on simultaneous analysis of beta-tubulin, GAPDH and SSU rDNA sequences. Taxon 54:606–618

    Google Scholar 

  • Nannfeldt JA (1932) Studien über die Morphologie und Systematik der nicht-lichenisierten inoperculaten Discomyceten. Nova Acta Regiae Soc Sci Upsal Sect. 4, 8(2):1–368

    Google Scholar 

  • Nelsen MP, Gargas A (2008) Phylogenetic distribution and evolution of secondary metabolites in the lichenized fungal genus Lepraria (Lecanorales: Stereocaulaceae). Nova Hedwigia 86:115–131

    Google Scholar 

  • Nelsen MP, Gargas A (2009) Assessing clonality and chemotype monophyly in Thamnolia (Icmadophilaceae). Bryologist 112:42–53

    Google Scholar 

  • Nelsen MP, Lücking R, Umaña L, Trest MT, Will-Wolf S, Chaves JL, Gargas A (2007) Multiclavula ichthyiformis (Fungi: Basidiomacota: Cantharellales: Clavulinaceae), a remarkable new basidiolichen from Costa Rica. Am J Bot 94:1289–1296

    Google Scholar 

  • Nelsen MP, Lumbsch HT, Lücking R, Elix JA (2008) Further evidence for the polyphyly of Lepraria (Lecanorales: Stereocaulaceae). Nova Hedwigia 87:361–371

    Google Scholar 

  • Nordin A, Mattsson JE (2001) Phylogenetic reconstruction of character development in Physciaceae. Lichenologist 33:3–23

    Google Scholar 

  • Norvell LL, Redhead SA, Ammirati JF (1994) Omphalina sensu lato in North America. 1. Omphalina wynniae and the genus Chrysomphalina. 2. Omphalina sensu Bigelow. Mycotaxon 50:379–407

    Google Scholar 

  • Nylander W (1854) Essai d'une nouvelle Classification des Lichens. Mém Soc Sci Nat Math Cherbourg 2:5–16

    Google Scholar 

  • Ohmura Y (2002) Phylogenetic evaluation of infrageneric groups of the genus Usnea based on ITS regions in rDNA. J Hattori Bot Lab 92:231–243

    Google Scholar 

  • Ohmura Y, Kanda H (2004) Taxonomic status of section Neuropogon in the genus Usnea elucidated by morphological comparison and ITS rDNA sequences. Lichenologist 36:217–225

    Google Scholar 

  • Opanowicz M, Blaha J, Grube M (2006) Detection of paralogous polyketide synthase genes in Parmeliaceae by specific primers. Lichenologist 38:47–54

    Google Scholar 

  • Orange A (2009) Two parasitic species of Placopyrenium (Verrucariaceae) from freshwater habitats in north-west Europe. Lichenologist 41:131–139

    Google Scholar 

  • Otálora MAG, Mertínez I, Molina MC, Aragón G, Lutzoni F (2008) Phylogenetic relationships and taxonomy of the Leptogium lichenoides group (Collemataceae, Ascomycota) in Europe. Taxon 57:907–921

    Google Scholar 

  • Ott S, Lumbsch HT (2001) Morphology and phylogeny of ascomycete lichens. In: Hock B, Esser K (eds) The Mycota, vol IX, Fungal associations. Springer, Berlin, pp 189–210

    Google Scholar 

  • Ott S, Brinkmann M, Wirtz N, Lumbsch HT (2004) Mitochondrial and nuclear-ribosomal DNA data do not support the separation of the Antarctic lichens Umbilicaria kappenii and Umbilicaria antarctica as distinct species. Lichenologist 36:227–234

    Google Scholar 

  • Palice Z, Schmitt I, Lumbsch HT (2005) Molecular data confirm that Omphalina foliacea is a lichen-forming basidiomycete. Mycol Res 109:447–451

    PubMed  CAS  Google Scholar 

  • Passo A, Stenroos S, Calvelo S (2008) Joergensenia, a new genus to accommodate Psoroma cephalodium (lichenized Ascomycota). Mycol Res 112:1465–1474

    PubMed  Google Scholar 

  • Persoh D, Rambold G (2002) Phacopsis — a lichenicolous genus of the family Parmeliaceae. Mycol Prog 1:43–55

    Google Scholar 

  • Persoh D, Beck A, Rambold G (2004) The distribution of ascus types and photobiontal selection in Lecanoromycetes (Ascomycota) against a background of a revised SSU nrDNA phylogeny. Mycol Progr 3:103–121

    Google Scholar 

  • Piercey-Normoore MD, Coxson D, Goward T, Goffinet B (2006) Phylogenetic position of a Pacific Northwest North American encemic cyanolichen, Nephroma occultum (Ascomycota, Peltigerales). Lichenologist 38:441–456

    Google Scholar 

  • Platt JL, Spatafora JW (1999) A re-examination of generic concepts of baeomycetoid lichens based on phylogenetic analyses of nuclear SSU and LSU ribosomal DNA. Lichenologist 31:409–418

    Google Scholar 

  • Platt JL, Spatafora JW (2000) Evolutionary relationships of nonsexual lichenized fungi: molecular phylogenetic hypotheses for the genera Siphula and Thamnolia from SSU and LSU rDNA. Mycologia 92:475–487

    CAS  Google Scholar 

  • Prieto A, Leal JA, Bernabé M, Hawksworth DL (2008) A polysaccharide from Lichina pygmaea and L. confinis supports the recognition of Lichinomycetes. Mycol Res 112:381–388

    PubMed  CAS  Google Scholar 

  • Printzen C (1995) Die Flechtengattung Biatora in Europa. Biblioth Lichenol 60:1–275

    Google Scholar 

  • Printzen C, Lumbsch HT (2000) Molecular evidence for the diversification of extant lichens in the Late Cretaceous and Tertiary. Mol Phylogenet Evol 17:379–387

    PubMed  CAS  Google Scholar 

  • Printzen C, Kantvilas G (2004) Hertelidea, genus novum Stereocaulacearum (ascomycetes lichenisati). Biblioth Lichenol 88:539–553

    Google Scholar 

  • Printzen C, Lumbsch HT, Orange A (2001) Biatora britannica sp. nov. and the occurrence of Biatora efflorescens in the British Isles. Lichenologist 33:181–187

    Google Scholar 

  • Rambold G, Triebel D (1990) Gelatinopsis, Geltingia and Phyeopyxis, three helotialean genera with lichenicolous species. Notes Roy Bot Garden Edinburgh 46:375–389

    Google Scholar 

  • Rambold G, Triebel D (1992) The inter-lecanoralean associations. Biblioth Lichenol 48:1–201

    Google Scholar 

  • Rambold G, Triebel D, Hertel H (1993) Icmadophilaceae, a new family in the Leotiales. Biblioth Lichenol 53:217–240

    Google Scholar 

  • Rambold G, Mayrhofer H, Matzer M (1994) On the ascus type in the Physciaceae (Lecanorales). Plant Syst Evol 192:31–40

    Google Scholar 

  • Rauhut A (2006) Molekulare Phylogenie der Flechtenfamilie Peltulaceae (Lichinales, Ascomycota). Ph.D. Dissertation, Technische Universität Kaiserslautern

    Google Scholar 

  • Redhead SA, Kuyper SW (1987) Lichenized agarics: taxonomic and nomenclatural riddles. In: Laursen GA, Ammirati JF Redhead SA (eds) Arctic and alpine mycology II. Plenum, New York, pp 319–348

    Google Scholar 

  • Redhead SA, Lutzoni F, Moncalvo JM, Vilgalys R (2002) Phylogeny of agarics: partial systematic solutions for core omphalinoid genera in the Agaricales (euagarics). Mycotaxcon 83:19–57

    Google Scholar 

  • Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-fomring Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060

    PubMed  CAS  Google Scholar 

  • Reese Næsborg R, Ekman S, Tibell L (2007) Molecular phylogeny of the genus Lecania (Ramalinaceae, lichenized Ascomycota). Mycol Res 111:581–591

    PubMed  Google Scholar 

  • Saag A, Randlane T, Thell A, Obermayer W (2002) Phylogenetic analysis of cetrarioid lichens with globose ascospores. Proc Estonian Acad Sci Biol Ecol 51:103–123

    Google Scholar 

  • Santesson R (1952) Foliicolous lichens I. Symb Bot Upsal 12(1):1–590

    Google Scholar 

  • Savić S (2007) Phylogeny and taxonomy of Polyblastia and allied taxa. Ph.D. dissertation, Uppsala Universitet

    Google Scholar 

  • Savić S, Tibell L (2008) Atla, a new genus in the Verrucariaceae. Lichenologist 40:269–282

    Google Scholar 

  • Savić S, Tibell L, Gueidan C, Lutzoni F (2008) Molecular phylogeny and systematics of Polyblastia (Verrucariaceae, Eurotiomycetes) and allied genera. Mycol Res 112:1307–1318

    PubMed  Google Scholar 

  • Schmitt I, Lumbsch HT (2004) Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. Mol Phylogenet Evol 33:43–55

    PubMed  CAS  Google Scholar 

  • Schmitt I, Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS ONE 4:e4437. doi:10.1371/journal.pone.0004437

    PubMed  Google Scholar 

  • Schmitt I, Messuti MI, Feige GB, Lumbsch HT (2001) Molecular data support rejection of the generic concept in the Coccotremataceae (Ascomycota). Lichenologist 33:315–321

    Google Scholar 

  • Schmitt I, Lumbsch HT, Søchting U (2003a) Phylogeny of the lichen genus Placopsis and its allies based on Bayesian analyses of nuclear and mitochondrial sequences. Mycologia 95:827–835

    PubMed  CAS  Google Scholar 

  • Schmitt I, Martín MP, Türk R, Lumbsch HT (2003b) Phylogenetic position of the genera Melanaria, Varicellaria and Thamnochrolechia (Pertusariales). Biblioth Lichenol 86:147–154

    Google Scholar 

  • Schmitt I, Mueller G, Lumbsch HT (2005) Ascoma morphology is homoplaseous and phylogenetically misleading in some pyrenocarpous lichens. Mycologia 97:362–374

    PubMed  CAS  Google Scholar 

  • Schmitt I, Yamamoto Y, Lumbsch HT (2006) Phylogeny of Pertusariales (Ascomycotina): Resurrection of Ochrolechiaceae and new circumscription of Megasporaceae. J Hattori Bot Lab 100:753–764

    Google Scholar 

  • Schmitt I, Kautz S, Lumbsch HT (2008) 6-MSAS-like polyketide synthase genes occur in lichenized ascomycetes. Mycol Res 112:289–2996

    PubMed  CAS  Google Scholar 

  • Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052

    PubMed  CAS  Google Scholar 

  • Schultz M, Büdel B (2003) On the systematic position of the lichen genus Heppia. Lichenologist 35:151–156

    Google Scholar 

  • Schultz M, Arendholz WR, Büdel B (2001) Origin and evolution of the lichenized ascomycete order Lichinales: monophyly and systematic relationships inferred from ascus, fruiting body and SSU rDNA evolution. Plant Biol 3:116–123

    CAS  Google Scholar 

  • Schwendener S (1867) Gonidien und Fasern vieler Flechten stehen nicht in genetischem Zusammenhange, sondern letzte sind Wucherungen von Pilzfäden in Algenformen. Verh Allg Schweizerischen Ges Gesammten Naturwiss 51:87

    Google Scholar 

  • Seymour FA, Crittenden PD, Wirtz N, Øvstedal DO, Dyer PS, Lumbsch HT (2007) Phylogenetic and morphological analysis of Antarctic lichen-forming Usnea species in the group Neuropogon. Antarct Sci 19:71–82

    Google Scholar 

  • Søchting U, Lutzoni F (2003) Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae). Mycol Res 107:1266–1276

    PubMed  Google Scholar 

  • Søchting U, Kärnefelt I, Kondratyuk S (2002) Revision of Xanthomendoza (Teloschistaceae, Lecanorales) based on morphology, anatomy, secondary metabolites and molecular data. Mitt Inst Allg Bot Hamburg 30–32:225–240

    Google Scholar 

  • Spatafora JW (1995) Ascomal evolution of filamentous ascomycetes: evidence from molecular data. Can J Bot 73(Suppl 1):S811–S815

    CAS  Google Scholar 

  • Spatafora JW, Sung GH, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    PubMed  CAS  Google Scholar 

  • Spribille T, Printzen C (2007) Lecidea rubrocastanea, a new lichen species from conifer bark and wood in interior western North America (Lecanorales, lichenized ascomycetes). Lichenologist 39:339–347

    Google Scholar 

  • Spribille T, Björk CB, Ekman S, Elix JA, Goward T, Printzen C, Tønsberg T, Wheeler T (2009) Contributions to an epiphytic lichen flora of northwest North America: Eight species from British Columbia inland rain forests. Bryologist 112:109–137

    Google Scholar 

  • Staiger B, Kalb K, Grube M (2006) Phylogeny and phenotypic variation in the lichen family Graphidaceae (Ostropomycetidae, Ascomycota). Mycol Res 110:765–772

    PubMed  CAS  Google Scholar 

  • Stenroos SK, DePriest P (1998) SSU rDNA phylogeny of cladoniiform lichens. Am J Bot 85:1548–1559

    CAS  Google Scholar 

  • Stenroos SK, Myllys L, Thell A, Hyvönen J (2002a) Phylogenetic hypotheses: Cladoniaceae, Stereocaulaceae, Baeomycetaceae, and Icmadophilaceae revisited. Mycol Progr 1:267–282

    Google Scholar 

  • Stenroos S, Hyvönen J, Myllys L, Thell A, Ahti T (2002b) Phylogeny of the genus Cladonia s. lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18:237–278

    Google Scholar 

  • Stenroos S, Stocker-Wörgötter E, Yoshimura I, Myllys L, Thell A, Hyvönen J (2003) Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Can J Bot 81:232–247

    CAS  Google Scholar 

  • Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200

    PubMed  Google Scholar 

  • Tehler A (1982) The species pair concept in lichenology. Taxon 31:708–717

    Google Scholar 

  • Tehler A (1990) A new approach to the phylogeny of Euascomycetes with a cladistic outline of Arthoniales focussing on Roccellaceae. Can J Bot 68:2458–2492

    Google Scholar 

  • Tehler A (1995a) Morphological data, molecular data, and total evidence in phylogenetic analysis. Can J Bot 73:S667–S676

    Google Scholar 

  • Tehler A (1995b) Arthoniales phylogeny as indicated by morphological and rDNA sequence data. Crypt Bot 5:82–97

    Google Scholar 

  • Tehler A, Irestedt M (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics 23:432–454

    Google Scholar 

  • Tehler A, Källersjö M (2001) Parmeliopsis ambigua and P. hyperopta (Parmeliaceae): species or chemotypes? Lichenologist 33:403–408

    Google Scholar 

  • Tehler A, Little DP, Farris JS (2003) The full-length phylogenetic tree from 1551 ribosomal sequences of chitinous fungi, Fungi. Mycol Res 107:901–916

    PubMed  CAS  Google Scholar 

  • Tehler A, Dahlkild Å, Eldenäs P, Feige GB (2004) The phylogeny and taxonomy of Macaronesian, European and Mediterranean Roccella (Roccellaceae, Arthoniales). Symb Bot Upsal 34(1):405–428

    Google Scholar 

  • Thell A (1998) Phylogenetic relationships of some cetrarioid species in British Columbia with notes on Tuckermannopsis. Folia Cryptog Estonica 32:113–122

    Google Scholar 

  • Thell A, Stenroos S, Myllys L (2000) A DNA study of the Cetraria aculeata and C. islandica groups. Folia Cryptog Estonica 36:95–106

    Google Scholar 

  • Thell A, Feuerer T, Kärnefelt I, Myllys L, Stenroos S (2002) Phylogeny and ecology of Cetraria obtusata, Coelopogon epiphorellus, and related taxa (Parmeliaceae, lichenized Ascomycetes). Mitt Inst Allg Bot Hamburg 30–32:283–296

    Google Scholar 

  • Thell A, Feuerer T, Kärnefelt I, Myllys L, Stenroos S (2004) Monophyletic groups within the Parmeliaceae identified by ITS rDNA, ß-tubulin and GAPDH sequences. Mycol Progr 3:297–314

    Google Scholar 

  • Thell A, Herber B, Aptroot A, Adler MT, Feuerer T, Kärnefelt EI (2005) A preliminary phylogeographic study of Flavopunctelia and Punctelia inferred from rDNA ITS-sequences. Folia Cryptog Estonica 41:115–122

    Google Scholar 

  • Thell A, Feuerer T, Elix JA, Kärnefelt I (2006) A contribution to the phylogeny and taxonomy of Xanthoparmelia (Ascomycota, Parmeliaceae). J Hattori Bot Lab 100:797–807

    Google Scholar 

  • Thomas MA, Ryan DJ, Farnden KJ, Galloway DJ (2002) Observations on phylogenetic relationships within Lobariaceae Chevall. (Lecanorales, Ascomycota) in New Zealand, based on ITS-5.8S molecular sequence data. Biblioth Lichenol 82:123–138

    Google Scholar 

  • Thüs H, Nascimbene J (2008) Contributions toward a new taxonomy of Central European freshwater species of the lichen genus Thelidium (Verrucariales, Ascomycota). Lichenologist 40:499–521

    Google Scholar 

  • Tibell L (2001) Cybebe gracilenta in an ITS/5.8S rDNA based phylogeny belongs to Chaenotheca (Coniocybaceae, lichenized Ascomycetes). Lichenologist 33:519–525

    Google Scholar 

  • Tibell L (2003) Tholurna dissimilis and generic delimitation in Caliciaceae inferred from nuclear ITS and LSU rDNA phylogenies (Lecanorales, lichenized ascomycetes). Mycol Res 107:1403–1418

    PubMed  CAS  Google Scholar 

  • Tibell L, Wedin M (2000) Mycocaliciales, a new order for nonlichenized calicioid fungi. Mycologia 92:577–581

    Google Scholar 

  • Timdal E (2002) Stereocaulon cumulatum comb. nov., another crustose species in the genus. Lichenologist 34:7–11

    Google Scholar 

  • Tretiach M, Muggia L, Baruffo L (2009) Species delimitation in the Lepraria isidiata-L. santosii group: a population study in the Mediterranean-Macaronesian region. Lichenologist 41:1–15

    Google Scholar 

  • Vainio EA (1890) Étude sur la classification naturelle et la morphologie des lichens du Brésil. Héritiers J, Simelius, Helsingfors

    Google Scholar 

  • Vondrák J, Šoun J, Hrouzek P et al (2008) Caloplaca subalpina and C. thracopontica, two new saxicolous species from the Caloplaca cerina group (Teloschistales). Lichenologist 40:375–486

    Google Scholar 

  • Wedin M, Döring H (1999) The phylogenetic relationship between the Sphaerophoraceae, Neophyllis and Austropeltum (lichenized Ascomycota). Mycol Res 103:1131–1137

    CAS  Google Scholar 

  • Wedin M, Tibell L (1997) Phylogeny and evolution of Caliciaceae, Mycocaliciaceae and Sphinctrinaceae (Ascomycota), with notes on the evolution of the prototunicate ascus. Can J Bot 75:1236–1242

    Google Scholar 

  • Wedin M, Wiklund E (2004) The phylogenetic relationships of Lecanorales suborder Peltigerineae revisited. Symb Bot Upsal 34(1):469–475

    Google Scholar 

  • Wedin M, Tehler A, Gargas A (1998) Phylogenetic relationships of Sphaerophoraceae (Ascomycetes) inferred from SSU rDNA sequences. Plant Syst Evol 209:75–83

    Google Scholar 

  • Wedin M, Döring H, Mattsson JE (1999) A multigene study of the phylogenetic relationships of the Parmeliaceae (Lecanorales, lichenized Ascomycota). Mycol Res 103:1185–1192

    CAS  Google Scholar 

  • Wedin M, Döring H, Ekman S (2000a) Molecular phylogeny of the lichen families Cladoniaceae, Sphaerophoraceaea and Stereocaulaceae (Lecanorales, Asconycotina). Lichenologist 32:171–187

    Google Scholar 

  • Wedin M, Döring H, Nordin A, Tibell L (2000b) Small subunit rDNA phylogeny shows the lichen families Caliciaceae and Physciaceae (Lecanorales, Ascomycotina) to form a monophyletic group. Can J Bot 78:246–254

    CAS  Google Scholar 

  • Wedin M, Baloch E, Grube M (2002) Parsimony analyses of mtSSU and nITS rDNA sequences reveal the natural relationships of the lichen families Physciaceae and Caliciaceae. Taxon 51:655–660

    Google Scholar 

  • Wedin M, Döring H, Gilenstam G (2004) Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol 164:459–465

    Google Scholar 

  • Wedin M, Wiklund E, Crewe A, Döring H, Ekman S, Nyberg Å, Schmitt I, Lumbsch HT (2005a) Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycol Res 109:159–172

    PubMed  CAS  Google Scholar 

  • Wedin M, Döring H, Könberg K, Gilenstam G (2005b) Generic delimitation in the family Stictidaceae (Ostropales, Ascomycota): the Stictis-Conotrema problem. Lichenologist 37:67–75

    Google Scholar 

  • Wedin M, Jørgensen PM, Wiklund E (2007) Massalongiaceae fam. nov., an overlooked monophyletic group among the cyanobacterial lichens (Peltigerales, Lecanoromycetes, Ascomycota). Lichenologist 39:61–67

    Google Scholar 

  • Wedin M, Westberg M, Crewe AT, Tehler A, Purvis OW (2009) Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (Ascomycota, Fungi) complex. Cladistics 25:161–172

    Google Scholar 

  • Westberg M, Arup U, Kärnefelt I (2007) Phylogenetic studies in the Candelariaceae (lichenized Ascomycota) based on nuclear ITS DNA sequences. Mycol Res 111:1277–1284

    PubMed  CAS  Google Scholar 

  • Wiklund E, Wedin M (2003) The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae. Cladistics 19:419–431

    Google Scholar 

  • Winka K, Ahlberg C, Eriksson OE (1998) Are there lichenized Ostropales? Lichenologist 30:455–462

    Google Scholar 

  • Wirtz N, Printzen C, Sancho LG, Lumbsch HT (2006) The phylogeny and classification of Neuropogon and Usnea (Parmeliaceae, Ascomycota) revisited. Taxon 55:367–376

    Google Scholar 

  • Wirtz N, Printzen C, Lumbsch HT (2008) The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycol Res 112:472–484

    PubMed  CAS  Google Scholar 

  • Zahlbruckner A (1926) Lichenes (Flechten). In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol 8. Verlag von Wilhelm Engelmann, Leipzig, pp 61–263

    Google Scholar 

  • Zhou QM, Wei JC, Ahti T, Stenroos S, Högnabba F (2006) The systematic position of Gymnoderma and Cetradonia based on SSU rDNA sequences. J Hattori Bot Lab 100:871–880

    Google Scholar 

Download references

Acknowledgements

My thanks are due to Burkhard Büdel for inviting this review, Ana Crespo (Madrid), Thorsten Lumbsch (Chicago), Mats Wedin (Stockholm) for making manuscripts available before publication and Imke Schmitt (St. Paul) and two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Printzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Printzen, C. (2010). Lichen Systematics: The Role of Morphological and Molecular Data to Reconstruct Phylogenetic Relationships. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 71. Progress in Botany, vol 71. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02167-1_10

Download citation

Publish with us

Policies and ethics