Skip to main content

Discrete online TSP

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5564))

Abstract

In this paper we introduce a discrete version of the online traveling salesman problem (DOLTSP). We represent the metric space using a weighted graph, where the server is allowed to modify its route only at the vertices. This limitation directly affects the capacity of the server to react and increases the risk related to each decision. We prove lower bounds on the performance of deterministic online algorithms in different scenarios of DOLTSP, and we present distinct algorithms for the problem, some of them achieving the best possible performance. We measure the performance of the algorithms using competitive analysis, the most widely accepted method for evaluating online algorithms. Besides, we perform an empirical simulation on paths, generating a significant set of instances and measuring the quality of the solutions given by each algorithm. Our experiments show that algorithms with the best competitive ratio do not have the best performance in practice.

Research supported in part by UBACyT projects X143 and X212, and by ANPCyT project PICT-2006-01600.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Paepe, W.E.: Complexity Results and Competitive Analysis for Vehicle Routing Problems. PhD thesis, Technische Universiteit Eindhoven (2002)

    Google Scholar 

  2. Deif, I., Bodin, L.: Extension of the Clarke and Wright algorithm for solving the vehicle routing problem with backhauling. In: Babson Conference on Software Uses in Transportation and Logistics Management, Babson Park, MA (1984)

    Google Scholar 

  3. Savelsbergh, M.W.P.: Local search in routing problems with time windows. Annals of Operations Research 4(1-4), 285–305 (1985)

    Article  MathSciNet  Google Scholar 

  4. Stein, D.: An asymptotic, probabilistic analysis of a routing problem. Mathematics of Operations Research 3(2), 89–101 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  6. Fiat, A., Woeginger, G.J.: Online Algorithms: The State of the Art. LNCS, vol. 1442. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  7. Ascheuer, N., Krumke, S.O., Rambau, J.: Online dial-a-ride problems: Minimizing the completion time. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 639–650. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Ausiello, G., Bonifaci, V., Laura, L.: The on-line asymmetric traveling salesman problem. Journal of Discrete Algorithms 6(2), 290–298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29(4), 560–581 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Blom, M., Krumke, S.O., de Paepe, W., Stougie, L.: The online-TSP against fair adversaries. INFORMS Journal on Computing 13(2), 138–148 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lipmann, M.: On-line Routing. PhD thesis, Technische Universiteit Eindhoven (2003)

    Google Scholar 

  12. Psaraftis, H.N., Solomon, M.M., Magnanti, T.L., Kim, T.U.: Routing and scheduling on a shoreline with release times. Management Science 36(2), 212–223 (1990)

    Article  MATH  Google Scholar 

  13. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of ACM 28, 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  14. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 79–119 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM Journal on Computing 30(1), 300–317 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aprea, M., Feuerstein, E., Sadovoy, G., de Loma, A.S. (2009). Discrete online TSP. In: Goldberg, A.V., Zhou, Y. (eds) Algorithmic Aspects in Information and Management. AAIM 2009. Lecture Notes in Computer Science, vol 5564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02158-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02158-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02157-2

  • Online ISBN: 978-3-642-02158-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics