Skip to main content

Efficient Suboptimal Graph Isomorphism

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5534))

Abstract

In the field of structural pattern recognition, graphs provide us with a common and powerful way to represent objects. Yet, one of the main drawbacks of graph representation is that the computation of standard graph similarity measures is exponential in the number of involved nodes. Hence, such computations are feasible for small graphs only. The present paper considers the problem of graph isomorphism, i.e. checking two graphs for identity. A novel approach for the efficient computation of graph isomorphism is presented. The proposed algorithm is based on bipartite graph matching by means of Munkres’ algorithm. The algorithmic framework is suboptimal in the sense of possibly rejecting pairs of graphs without making a decision. As an advantage, however, it offers polynomial runtime. In experiments on two TC-15 graph sets we demonstrate substantial speedups of our proposed method over several standard procedures for graph isomorphism, such as Ullmann’s method, the VF2 algorithm, and Nauty. Furthermore, although the computational framework for isomorphism is suboptimal, we show that the proposed algorithm rejects only very few pairs of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)

    Article  Google Scholar 

  2. Ullmann, J.: An algorithm for subgraph isomorphism. Journal of the Association for Computing Machinery 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

  3. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for matching large graphs. In: Proc. 3rd Int. Workshop on Graph Based Representations in Pattern Recognition (2001)

    Google Scholar 

  4. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching. Mathematical Structures in Computer Science 12(4), 403–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. McKay, B.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Emms, D., Hancock, E., Wilson, R.: A correspondence measure for graph matching using the discrete quantum walk. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 81–91. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Messmer, B., Bunke, H.: A decision tree approach to graph and subgraph isomorphism detection. Pattern Recognition 32, 1979–1998 (2008)

    Article  Google Scholar 

  8. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  10. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Addison Wesley, Reading (1974)

    MATH  Google Scholar 

  11. Hopcroft, J., Wong, J.: Linear time algorithm for isomorphism of planar graphs. In: Proc. 6th Annual ACM Symposium on Theory of Computing, pp. 172–184 (1974)

    Google Scholar 

  12. Luks, E.: Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and Systems Sciences 25, 42–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, X., Bunke, H.: Optimal quadratic-time isomorphism of ordered graphs. Pattern Recognition 32(17), 1273–1283 (1999)

    Article  Google Scholar 

  14. Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique node labels. Pattern Analysis and Applications 7(3), 243–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ebeling, C.: Gemini ii: A second generation layout validation tool. In: IEEE International Conference on Computer Aided Design, pp. 322–325 (1988)

    Google Scholar 

  16. Bunke, H.: Error correcting graph matching: On the influence of the underlying cost function. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(9), 917–911 (1999)

    Google Scholar 

  17. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. In: Image and Vision Computing (2008) (accepted for publication)

    Google Scholar 

  18. Eshera, M., Fu, K.: A graph distance measure for image analysis. IEEE Transactions on Systems, Man, and Cybernetics (Part B) 14(3), 398–408 (1984)

    Article  MATH  Google Scholar 

  19. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial and Applied Mathematics 5, 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Foggia, P., Sansone, C., Vento, M.: A database of graphs for isomorphism and subgraph isomorphism benchmarking. In: Proc. 3rd Int. Workshop on Graph Based Representations in Pattern Recognition, pp. 176–187 (2001)

    Google Scholar 

  21. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(20), 1367–1372 (2004)

    Article  Google Scholar 

  22. Morgan, H.: The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. Journal of Chemical Documentation 5(2), 107–113 (1965)

    Article  Google Scholar 

  23. Mahé, P., Ueda, N., Akutsu, T.: Graph kernels for molecular structures – activity relationship analysis with support vector machines. Journal of Chemical Information and Modeling 45(4), 939–951 (2005)

    Article  Google Scholar 

  24. Foggia, P., Sansone, C., Vento, M.: A performance comparison of five algorithms for graph isomorphism. In: Jolion, J., Kropatsch, W., Vento, M. (eds.) Proc. 3rd Int. Workshop on Graph Based Representations in Pattern Recognition, pp. 188–199 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riesen, K., Fankhauser, S., Bunke, H., Dickinson, P. (2009). Efficient Suboptimal Graph Isomorphism. In: Torsello, A., Escolano, F., Brun, L. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2009. Lecture Notes in Computer Science, vol 5534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02124-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02124-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02123-7

  • Online ISBN: 978-3-642-02124-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics