Skip to main content

Modeling and Designing Real–World Networks

  • Chapter
Algorithmics of Large and Complex Networks

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5515))

Abstract

In the last 10 years a new interest in so–called real–world graph structures has developed. Since the structure of a network is crucial for the processes on top of it a well–defined network model is needed for simulations and other kinds of experiments. Thus, given an observable network structure, models try to explain how they could have evolved. But sometimes also the opposite question is important: given a system with specific constraints what kind of rules will lead to a network with the specified structure? This overview article discusses first different real–world networks and their structures that have been analyzed in the last decade and models that explain how these structures can emerge. This chapter concentrates on those structures and models that are very simple and can likely be included into technical networks such as P2P-networks or sensor networks. In the second part we will then discuss how difficult it is to design local network generating rules that lead to a globally satisfying network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Review of Modern Physics 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  3. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  4. Andersen, R., Chung, F., Lu, L.: Analyzing the small world phenomenon using a hybrid model with local network flow. In: Leonardi, S. (ed.) WAW 2004. LNCS, vol. 3243, pp. 19–30. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Barabási, A.-L.: Linked - The New Science of Network. Perseus, Cambridge (2002)

    Google Scholar 

  6. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baumann, N., Stiller, S.: Network Models. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 341–372. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Berners-Lee, T., Hall, W., Hendler, J.A., O’Hara, K., Shadbolt, N., Weitzner, D.J.: A framework for web science. Foundations and Trends in Web Science 1(1), 1–130 (2006)

    Article  MATH  Google Scholar 

  9. Bollobás, B.: Random Graphs, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 73. Cambridge University Press, London (2001)

    Book  MATH  Google Scholar 

  10. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs. In: Handbook of Graphs and Networks, pp. 1–34. Springer, Heidelberg (2003)

    Google Scholar 

  11. Bollobás, B., Riordan, O.M.: The diameter of a scale–free random graph. Combinatorica 24(1), 5–34 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bornholdt, S., Schuster, H.G. (eds.): Handbook of Graphs and Networks. Wiley-VCH, Weinheim (2003)

    MATH  Google Scholar 

  13. Brandes, U., Erlebach, T. (eds.): Network Analysis - Methodological Foundations. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  14. Chung, F., Lu, L.: The small world phenomenon in hybrid power law graphs. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks, pp. 91–106 (2004)

    Google Scholar 

  15. Chung, F., Lu, L.: Complex Graphs and Networks. American Mathematical Society, Providence (2006)

    Book  MATH  Google Scholar 

  16. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)

    Article  Google Scholar 

  17. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power–law distributions in empirical data. ArXiv (June 2007)

    Google Scholar 

  18. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  19. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  20. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. Computer Communications Review 29, 251–262 (1999)

    Article  MATH  Google Scholar 

  21. Ferrante, A., Pandurangan, G., Park, K.: On the hardness of optimization in power-law graphs. Theor. Comput. Sci. 393(1-3), 220–230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gilbert, E.N.: Random graphs. Anual Math. Statist. 30, 1141–1144 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jansen, T., Theile, M.: Stability in the self-organized evolution of networks. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 931–938 (2007)

    Google Scholar 

  25. Kleinberg, J.: Navigation in a small world. Nature 406, 845 (2000)

    Article  Google Scholar 

  26. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Proceedings of the 32nd ACM Symposium on Theory of Computing, pp. 163–170 (2000)

    Google Scholar 

  27. Lehmann, K.A., Kaufmann, M.: Evolutionary algorithms for the self-organized evolution of networks. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 563–570 (2005)

    Google Scholar 

  28. Lehmann, K.A., Kaufmann, M.: Random Graphs, Small Worlds and Scale-Free Networks. In: Steinmetz, R., Wehrle, K. (eds.) Peer-to-Peer Systems and Applications. LNCS, vol. 3485, pp. 57–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  29. Lehmann, K.A., Post, H.D., Kaufmann, M.: Hybrid graphs as a framework for the small-world effect. Physical Review E 73, 056108 (2006)

    Article  Google Scholar 

  30. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: Densification laws, shrinking diameters, and possible explanations. In: Proceedings of the 11th ACM SIGKDD (2005)

    Google Scholar 

  31. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD) 1(1, 2) (2007)

    Google Scholar 

  32. Liljeros, F.: Sexual networks in contemporary western societies. Physica A 338, 238–245 (2004)

    Article  Google Scholar 

  33. Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Åberg, Y.: The web of human sexual contacts. . Nature 411, 907–908 (2001)

    Article  Google Scholar 

  34. Lotka, A.: The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences 16, 317–323 (1926)

    Google Scholar 

  35. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004)

    Article  Google Scholar 

  36. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  37. Mark, E.J.: The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences 98(2), 404–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Newman, M.E.J., Barabási, A.-L., Watts, D.J. (eds.): The Structure and Dynamics of Networks. Princeton University Press, Princeton (2006)

    Google Scholar 

  39. Nunkesser, M., Sawitzki, D.: Blockmodels. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 253–292. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  40. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  41. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Physical Review Letters 86(4), 3200–3203 (2001)

    Article  Google Scholar 

  42. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p *) models for social networks. Social Networks 29, 173–191 (2007)

    Article  Google Scholar 

  43. Robins, G., Snijder, T., Wang, P., Handcock, M., Pattison, P.: Recent developments in exponential random graph (p *) models for social networks. Social Networks 29, 192–215 (2007)

    Article  Google Scholar 

  44. Song, C., Havlin, S., Makse, H.A.: Origins of fractality in the growth of complex networks. Nature 2, 275–281 (2006)

    Google Scholar 

  45. Walsh, T.: Search in a small world. In: Proceedings of the IJCAI 1999 (1999)

    Google Scholar 

  46. Wasserman, S., Faust, K.: Social Network Analysis - Methods and Applications, revised, reprinted edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  47. Watts, D.J.: Small Worlds- The Dynamics of Networks between Order and Randomness. Princeton Studies in Complexity. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  48. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  49. Zweig, K.A.: On Local Behavior and Global Structures in the Evolution of Complex Networks. Ph.D thesis, University of Tübingen, Wilhelm-Schickard-Institut für Informatik (2007)

    Google Scholar 

  50. Zweig, K.A., Zimmermann, K.: Wanderer between the worlds – self-organized network stability in attack and random failure scenarios. In: Proceedings of the 2nd IEEE SASO (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaufmann, M., Zweig, K. (2009). Modeling and Designing Real–World Networks. In: Lerner, J., Wagner, D., Zweig, K.A. (eds) Algorithmics of Large and Complex Networks. Lecture Notes in Computer Science, vol 5515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02094-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02094-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02093-3

  • Online ISBN: 978-3-642-02094-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics