Skip to main content

Detecting Mental States by Machine Learning Techniques: The Berlin Brain–Computer Interface

  • Chapter
  • First Online:
Brain-Computer Interfaces

Abstract

The Berlin Brain-Computer Interface (BBCI) uses a machine learning approach to extract user-specific patterns from high-dimensional EEG-features optimized for revealing the user’s mental state. Classical BCI applications are brain actuated tools for patients such as prostheses (see Section 4.1) or mental text entry systems ([1] and see [2–5] for an overview on BCI). In these applications, the BBCI uses natural motor skills of the users and specifically tailored pattern recognition algorithms for detecting the user’s intent. But beyond rehabilitation, there is a wide range of possible applications in which BCI technology is used to monitor other mental states, often even covert ones (see also [6] in the fMRI realm). While this field is still largely unexplored, two examples from our studies are exemplified in Sections 4.3 and 4.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \(r^2\) value (squared biserial correlation coefficient) is a measure for how much of the variance in one variable is explained by the variance in a second variable, i.e., it is a measure for how good a single feature is in predicting the label.

  2. 2.

    This study was performed in cooperation with the Daimler AG. For further information, we refer to [55].

References

  1. B. Blankertz, M. Krauledat, G. Dornhege, J. Williamson, R. Murray-Smith, and K.-R. Müller, A note on brain actuated spelling with the Berlin Brain-Computer Interface, In C. Stephanidis, (Ed.), Universal access in HCI, Part II, HCII 2007, ser. LNCS, vol. 4555. Springer, Berlin Heidelberg, pp. 759–768 (2007).

    Google Scholar 

  2. G. Dornhege, J. del R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller (Eds.), Toward brain-computer interfacing. MIT Press, Cambridge, MA, (2007).

    Google Scholar 

  3. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and T.M. Vaughan, Brain-computer interfaces for communication and control, Clin Neurophysiol, 113(6), 767–791, (2002).

    Article  PubMed  Google Scholar 

  4. B. Allison, E. Wolpaw, and J. Wolpaw, Brain-computer interface systems: progress and prospects. Expert Rev Med Devices, 4(4), 463–474, (2007).

    Article  PubMed  Google Scholar 

  5. G. Pfurtscheller, C. Neuper, and N. Birbaumer, Human Brain-Computer Interface, In A. Riehle and E. Vaadia (Eds.), Motor cortex in voluntary movements, CRC Press, New York NY: ch. 14, pp. 367–401, (2005).

    Google Scholar 

  6. J. Haynes, K. Sakai, G. Rees, S. Gilbert, and C. Frith, Reading hidden intentions in the human brain, Curr Biol, 17, 323–328, (2007).

    Article  CAS  PubMed  Google Scholar 

  7. B. Blankertz, G. Dornhege, S. Lemm, M. Krauledat, G. Curio, and K.-R. Müller, The Berlin Brain-Computer Interface: machine learning based detection of user specific brain states. J Universal Computer Sci, 12(6), 581–607, (2006).

    Google Scholar 

  8. T. Elbert, B. Rockstroh, W. Lutzenberger, and N. Birbaumer, Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol, 48, 293–301, (1980).

    Article  CAS  Google Scholar 

  9. N. Birbaumer, A. Kübler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor, The thought translation device (TTD) for completly paralyzed patients. IEEE Trans Rehabil Eng, 8(2), 190–193, (June 2000).

    Article  CAS  PubMed  Google Scholar 

  10. M. Schreuder, B. Blankertz, and M. Tangermann, A new auditory multi-class brain-computer interface paradigm: Spatial hearing as an informative cue. PLoS ONE, 5(4),p. e9813, (2010).

    Google Scholar 

  11. H. H. Kornhuber and L. Deecke, Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflugers Arch, 284, 1–17, (1965).

    Article  CAS  Google Scholar 

  12. W. Lang, M. Lang, F. Uhl, C. Koska, A. Kornhuber, and L. Deecke, Negative cortical DC shifts preceding and accompanying simultaneous and sequential movements. Exp Brain Res, 74(1), 99–104, (1988).

    Google Scholar 

  13. R.Q. Cui, D. Huter, W. Lang, and L. Deecke, Neuroimage of voluntary movement: topography of the Bereitschaftspotential, a 64-channel DC current source density study. Neuroimage, 9(1), 124–134, (1999).

    Article  CAS  PubMed  Google Scholar 

  14. B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, V. Kunzmann, F. Losch, and G. Curio, The Berlin Brain-Computer Interface: EEG-based communication without subject training. IEEE Trans Neural Syst Rehabil Eng, 14(2), 147–152, (2006). [Online]. Available: http://dx.doi.org/10.1109/TNSRE.2006.875557. Accessed 14 Sept 2010.

  15. B. Blankertz, G. Dornhege, M. Krauledat, V. Kunzmann, F. Losch, G. Curio, and K.-R. Müller, The berlin brain-computer interface: machine-learning based detection of user specific brain states, In G. Dornhege, J. del R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller (Eds.), Toward Brain-Computer Interfacing, MIT, Cambridge, MA, pp. 85–101, (2007).

    Google Scholar 

  16. B. Blankertz, G. Dornhege, C. Schäfer, R. Krepki, J. Kohlmorgen, K.-R. Müller, V. Kunzmann, F. Losch, and G. Curio, Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans Neural Syst Rehabil Eng, 11(2), 127–131, (2003). [Online]. Available: http://dx.doi.org/10.1109/TNSRE.2003.814456. Accessed on 14 Sept 2010.

    Google Scholar 

  17. D. Krusienski, G. Schalk, D.J. McFarland, and J. Wolpaw, A mu-rhythm matched filter for continuous control of a brain-computer interface. IEEE Trans Biomed Eng, 54(2), 273–280, (2007).

    Article  PubMed  Google Scholar 

  18. V.V. Nikulin and T. Brismar, Phase synchronization between alpha and beta oscillations in the human electroencephalogram. Neuroscience, 137, 647–657, (2006).

    Article  CAS  PubMed  Google Scholar 

  19. G. Pfurtscheller and F.H.L. da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 110(11), 1842–1857, (Nov 1999).

    Article  CAS  PubMed  Google Scholar 

  20. P.L. Nunez, R. Srinivasan, A.F. Westdorp, R.S. Wijesinghe, D.M. Tucker, R.B. Silberstein, and P.J. Cadusch, EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol, 103(5), 499–515, (1997).

    Article  CAS  PubMed  Google Scholar 

  21. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Müller, Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag, 25(1), 41–56, (Jan. 2008). [Online]. Available: http://dx.doi.org/10.1109/MSP.2008.4408441. Accessed on 14 Sept 2010.

  22. D.J. McFarland, L.M. McCane, S.V. David, and J.R. Wolpaw, Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol, 103, 386–394, (1997).

    Article  CAS  PubMed  Google Scholar 

  23. N. Hill, T.N. Lal, M. Tangermann, T. Hinterberger, G. Widman, C.E. Elger, B. Schölkopf, and N. Birbaumer, Classifying event-related desynchronization in EEG, ECoG and MEG signals, In G. Dornhege, J. del R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller (Eds.), Toward brain-computer interfacing, MIT, Cambridge, MA, pp. 235–260, (2007).

    Google Scholar 

  24. M. Grosse-Wentrup, K. Gramann, and M. Buss, Adaptive spatial filters with predefined region of interest for EEG based brain-computer-interfaces, In B. Schölkopf, J. Platt, and T. Hoffman, (Eds.), Advances in neural information processing systems 19, pp. 537–544, (2007).

    Google Scholar 

  25. G. Dornhege, M. Krauledat, K.-R. Müller, and B. Blankertz, General signal processing and machine learning tools for BCI, In G. Dornhege, J. del R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller, (Eds.), Toward brain-computer interfacing, MIT, Cambridge, MA, pp. 207–233, (2007).

    Google Scholar 

  26. L.C. Parra, C.D. Spence, A.D. Gerson, and P. Sajda, Recipes for the linear analysis of EEG, Neuroimage, 28(2), 326–341, (2005).

    Article  PubMed  Google Scholar 

  27. K. Fukunaga, Introduction to statistical pattern recognition, 2nd ed. Academic, San Diego CA, (1990).

    Google Scholar 

  28. C. Guger, H. Ramoser, and G. Pfurtscheller, Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI). IEEE Trans Neural Syst Rehabil Eng, 8(4), 447–456, (2000).

    CAS  Google Scholar 

  29. H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng, 8(4), 441–446, (2000).

    Article  CAS  PubMed  Google Scholar 

  30. S. Lemm, B. Blankertz, G. Curio, and K.-R. Müller, Spatio-spectral filters for improving classification of single trial EEG. IEEE Trans Biomed Eng, 52(9), 1541–1548, (2005). [Online]. Available: http://dx.doi.org/10.1109/TBME.2005.851521. Accessed on 14 Sept 2010.

    Google Scholar 

  31. G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K.-R. Müller, Optimizing spatio-temporal filters for improving brain-computer interfacing, In Y. Weiss, B. Schölkopf, and J. Platt, (Eds.), Advances in neural Information Processing Systems (NIPS 05), vol. 18. MIT, Cambridge, MA, pp. 315–322, (2006).

    Google Scholar 

  32. R. Tomioka, K. Aihara, and K.-R. Müller, Logistic regression for single trial EEG classification, In B. Schölkopf, J. Platt, and T. Hoffman (Eds.), Advances in neural information processing systems 19, MIT, Cambridge, MA, pp. 1377–1384, (2007).

    Google Scholar 

  33. K.-R. Müller, C.W. Anderson, and G.E. Birch, Linear and non-linear methods for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 11(2), 165–169, (2003).

    Article  PubMed  Google Scholar 

  34. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd ed. Wiley, New York, (2001).

    Google Scholar 

  35. C. Stein, Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proceeding of 3rd Berkeley Symposium Mathematical Statistics. Probability 1, 197–206, (1956).

    Google Scholar 

  36. J.H. Friedman, Regularized discriminant analysis. J Am Stat Assoc, 84(405), 165–175, (1989).

    Article  Google Scholar 

  37. O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal, 88, 365–411, (2004).

    Article  Google Scholar 

  38. C. Vidaurre, N. Krämer, B. Blankertz, and A. Schlögl, Time domain parameters as a feature for EEG-based Brain Computer Interfaces. Neural Netw, 22, 1313–1319, (2009).

    Google Scholar 

  39. J. Schäfer and K. Strimmer, A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol, 4, Article32, (2005) [Online]. Available: http://www.bepress.com/sagmb/vol4/iss1/art32/.

  40. C. Neuper, R. Scherer, M. Reiner, and G. Pfurtscheller, Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res, 25(3), 668–677, (2005).

    Article  PubMed  Google Scholar 

  41. V.V. Nikulin, F.U. Hohlefeld, A.M. Jacobs, and G. Curio, Quasi-movements: a novel motor-cognitive phenomenon, Neuropsychologia, 46(2), 727–742, (2008). [Online]. Available: http://dx.doi.org/10.1016/j.neuropsychologia.2007.10.008. Accessed on 14 Sept 2010.

  42. B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, and G. Curio, The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Neuroimage, 37(2), 539–550, (2007). [Online]. Available: http://dx.doi.org/10.1016/j.neuroimage.2007.01.051. Accessed on 14 Sept 2010.

  43. J.R. Wolpaw, D.J. McFarland, and T.M. Vaughan, Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng, 8(2), 222–226, (2000).

    Google Scholar 

  44. A. Schlögl, J. Kronegg, J. Huggins, and S.G. Mason, Evaluation Criteria for BCI Research, In G. Dornhege, J. del R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller, (Eds.), Towards Brain-Computer Interfacing, MIT, Cambridge, MA, pp. 297–312, 2007.

    Google Scholar 

  45. G. Dornhege, Increasing information transfer rates for brain-computer interfacing, Ph.D. dissertation, University of Potsdam, (2006).

    Google Scholar 

  46. K.-R. Müller and B. Blankertz, Toward noninvasive brain-computer interfaces. IEEE Signal Process Mag, 23(5), 125–128, (Sept 2006).

    Article  Google Scholar 

  47. J. Williamson, R. Murray-Smith, B. Blankertz, M. Krauledat, and K.-R. Müller, Designing for uncertain, asymmetric control: Interaction design for brain-computer interfaces. Int J Hum-Comput Stud, 67(10), 827–841, (2009).

    Google Scholar 

  48. B. Blankertz, F. Losch, M. Krauledat, G. Dornhege, G. Curio, and K.-R. Müller, The Berlin Brain-Computer Interface: Accurate performance from first-session in BCI-naive subjects. IEEE Trans Biomed Eng, 55(10), 2452–2462, 2008. [Online]. Available: http://dx.doi.org/10.1109/TBME.2008.923152. Accessed on 14 Sept 2010.

  49. A. Kübler and K.-R. Müller, An introduction to brain computer interfacing, In G. Dornhege, J. del R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller, (Eds.), Toward Brain-Computer Interfacing, MIT, Cambridge, MA, pp. 1–25, (2007).

    Google Scholar 

  50. B. Blankertz, C. Sannelli, S. Halder, E. M. Hammer, A. Kübler, K. R. Müller, G. Curio, and T. Dickhaus, Neurophysiological predictor of SMR-based BCI performance. NeuroImage, 51, 1303–1309, (2010).

    Google Scholar 

  51. T. Dickhaus, C. Sannelli, K.-R. Müller, G. Curio, and B. Blankertz, Predicting BCI performance to study BCI illiteracy. BMC Neurosci 2009, 10(Suppl 1), P84, (2009).

    Google Scholar 

  52. B. Blankertz and C. Vidaurre, Towards a cure for BCI illiteracy: Machine-learning based co-adaptive learning. BMC Neuroscience 2009, 10, (Suppl 1), P85, (2009).

    Article  Google Scholar 

  53. C. Vidaurre and B. Blankertz, Towards a cure for BCI illiteracy, Open Access Brain Topogr, 23, 1303–1309, (2010).

    Google Scholar 

  54. C. Vidaurre, A. Schlögl, B. Blankertz, M. Kawanabe, and K.-R. Müller, Unsupervised adaptation of the LDA classifier for Brain-Computer Interfaces, in Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course 2008. Verlag der Technischen Universität Graz, (2008), pp. 122–127.

    Google Scholar 

  55. J. Kohlmorgen, G. Dornhege, M. Braun, B. Blankertz, K.-R. Müller, G. Curio, K. Hagemann, A. Bruns, M. Schrauf, and W. Kincses, Improving human performance in a real operating environment through real-time mental workload detection, In G. Dornhege, J. del R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller, (Eds.), Toward Brain-Computer Interfacing, MIT, Cambridge, MA, pp. 409–422, (2007).

    Google Scholar 

  56. K.-R. Müller, M. Tangermann, G. Dornhege, M. Krauledat, G. Curio, and B. Blankertz, Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J Neurosci Methods, 167(1), 82–90, (2008). [Online]. Available: http://dx.doi.org/10.1016/j.jneumeth.2007.09.022. Accessed on 14 Sept 2010.

  57. F. Popescu, S. Fazli, Y. Badower, B. Blankertz, and K.-R. Müller, Single trial classification of motor imagination using 6 dry EEG electrodes, PLoS ONE, 2(7), (2007). [Online]. Available: http://dx.doi.org/10.1371/journal.pone.0000637

  58. S. Fazli, M. Danóczy, M. Kawanabe, and F. Popescu, Asynchronous, adaptive BCI using movement imagination training and rest-state inference. IASTED’s Proceedings on Artificial Intelligence and Applications 2008. Innsbruck, Austria, ACTA Press Anaheim, CA, USA, (2008), pp. 85–90. [Online]. Available: http://portal.acm.org/citation.cfm?id=1712759.1712777

  59. L. Ramsey, M. Tangermann, S. Haufe, and B. Blankertz, Practicing fast-decision BCI using a “goalkeeper” paradigm. BMC Neurosci 2009, 10(Suppl 1), P69, (2009).

    Article  Google Scholar 

  60. M. Krauledat, G. Dornhege, B. Blankertz, G. Curio, and K.-R. Müller, The Berlin brain-computer interface for rapid response. Biomed Tech, 49(1), 61–62, (2004).

    Google Scholar 

  61. A. Kübler, B. Kotchoubey, J. Kaiser, J. Wolpaw, and N. Birbaumer, Brain-computer communication: Unlocking the locked in. Psychol Bull, 127(3), 358–375, (2001).

    Article  PubMed  Google Scholar 

  62. A. Kübler, F. Nijboer, J. Mellinger, T. M. Vaughan, H. Pawelzik, G. Schalk, D. J. McFarland, N. Birbaumer, and J. R. Wolpaw, Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64(10), 1775–1777, (2005).

    Article  PubMed  Google Scholar 

  63. N. Birbaumer and L. Cohen, Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol, 579, 621–636, (2007).

    Article  CAS  PubMed  Google Scholar 

  64. N. Birbaumer, C. Weber, C. Neuper, E. Buch, K. Haapen, and L. Cohen, Physiological regulation of thinking: brain-computer interface (BCI) research. Prog Brain Res, 159, 369–391, (2006).

    Google Scholar 

  65. L. Hochberg, M. Serruya, G. Friehs, J. Mukand, M. Saleh, A. Caplan, A. Branner, D. Chen, R. Penn, and J. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171, (Jul 2006).

    Article  CAS  PubMed  Google Scholar 

  66. J. Conradi, B. Blankertz, M. Tangermann, V. Kunzmann, and G. Curio, Brain-computer interfacing in tetraplegic patients with high spinal cord injury. Int J Bioelectromagnetism, 11, 65–68, (2009).

    Google Scholar 

  67. R. Krepki, B. Blankertz, G. Curio, and K.-R. Müller, The Berlin Brain-Computer Interface (BBCI): towards a new communication channel for online control in gaming applications. J Multimedia Tools, 33(1), 73–90, (2007). [Online]. Available: http://dx.doi.org/10.1007/s11042-006-0094-3. Accessed on 14 Sept 2010.

  68. R. Krepki, G. Curio, B. Blankertz, and K.-R. Müller, Berlin brain-computer interface - the hci communication channel for discovery. Int J Hum Comp Studies, 65, 460–477, (2007), special Issue on Ambient Intelligence.

    Article  Google Scholar 

  69. R. Leeb, F. Lee, C. Keinrath, R. Scherer, H. Bischof, and G. Pfurtscheller, Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans Neural Syst Rehabil Eng, 15(4), 473–482, (2007).

    Article  PubMed  Google Scholar 

  70. A. Gerson, L. Parra, and P. Sajda, Cortically coupled computer vision for rapid image search. IEEE Trans Neural Syst Rehabil Eng, 14(2), 174–179, (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We are very grateful to Nicole Krämer (TU Berlin) for pointing us to the analytic solution of the optimal shrinkage parameter for regularized linear discriminant analysis, see Section 2.2. The studies were partly supported by the Bundesministerium für Bildung und Forschung (BMBF), Fkz 01IB001A/B, 01GQ0850, by the German Science Foundation (DFG, contract MU 987/3-1), by the European Union’s Marie Curie Excellence Team project MEXT-CT-2004-014194, entitled “Brain2Robot” and by their IST Programme under the PASCAL Network of Excellence, ICT-216886. This publication only reflects the authors’ views. We thank our coauthors for allowing us to use published material from [7, 48, 52, 5557, 60].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Blankertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blankertz, B. et al. (2009). Detecting Mental States by Machine Learning Techniques: The Berlin Brain–Computer Interface. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds) Brain-Computer Interfaces. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02091-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02091-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02090-2

  • Online ISBN: 978-3-642-02091-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics