Skip to main content

BCIs in the Laboratory and at Home: The Wadsworth Research Program

  • Chapter
  • First Online:
Brain-Computer Interfaces

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Many people with severe motor disabilities lack the muscle control that would allow them to rely on conventional methods of augmentative communication and control. Numerous studies over the past two decades have indicated that scalp-recorded electroencephalographic (EEG) activity can be the basis for non-muscular communication and control systems, commonly called brain–computer interfaces (BCIs) [55]. EEG-based BCI systems measure specific features of EEG activity and translate these features into device commands. The most commonly used features are rhythms produced by the sensorimotor cortex [38, 55, 56, 59], slow cortical potentials [4, 5, 23], and the P300 event-related potential [12, 17, 46]. Systems based on sensorimotor rhythms or slow cortical potentials use oscillations or transient signals that are spontaneous in the sense that they are not dependent on specific sensory events. Systems based on the P300 response use transient signals in the EEG that are elicited by specific stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.Z. Allison and J.A. Pineda, ERPs evoked by different matrix sizes: Implications for a brain computer interface (BCI) system, IEEE Trans Neural Syst Rehab Eng, 11, 110–113, (2003).

    Article  Google Scholar 

  2. B.Z. Allison and J.A. Pineda, Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: Implications for a BCI system. Int J Psychophysiol, 59, 127–140, (2006).

    Article  PubMed  Google Scholar 

  3. B.Z. Allison, E.W. Wolpaw, and J.R. Wolpaw, Brain-computer interface systems: progress and prospects. Expert Rev Med Devices, 4, 463–474, (2007).

    Article  PubMed  Google Scholar 

  4. N. Birbaumer, et al., A spelling device for the paralyzed. Nature, 398, 297–298, (1999).

    Article  CAS  PubMed  Google Scholar 

  5. N. Birbaumer, et al., The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng, 8, 190–193, (2000).

    Article  CAS  PubMed  Google Scholar 

  6. N. Birbaumer, T. Hinterberger A. Kübler, and N. Neumann, The thought translation device (TTD): neurobehavioral mechanisms and clinical outcome. IEEE Trans Neural Syst Rehab Eng, 11, 120–3, (2003).

    Article  Google Scholar 

  7. B. Blankertz et al., Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans Neural Syst Rehab Eng, 11, 127–31, (2003).

    Article  Google Scholar 

  8. B. Cacace, D.J. and McFarland, Spectral dynamics of electroencephalographic activity during auditory information processing. Hearing Res, 176, 25–41, (2003).

    Article  Google Scholar 

  9. L. Citi, R. Poli, C. Cinel, and F. Sepulveda, P300-based brain computer interface with genetically-optimised analogue control. IEEE Trans Neural Syst Rehab Eng, 16, 51–61, (2008).

    Article  Google Scholar 

  10. J. Cohen, and J. Polich, On the number of trials needed for P300. Int J Psychophysiol, 25, 249–55, (1997).

    Article  CAS  PubMed  Google Scholar 

  11. J. Dien, K.M Spencer, and E. Donchin, Localization of the event-related potential novelty response as defined by principal components analysis. Cognitive Brain Research, 17, 637–650, (2003).

    Article  PubMed  Google Scholar 

  12. E. Donchin, K.M. Spencer, R. Wijesinghe, The mental prosthesis: Assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng, 8, 174–179, (2000).

    Article  CAS  PubMed  Google Scholar 

  13. J. Doyon, V. Penhue, and L.G .Ungerleider, Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41, 252–262, (2003).

    Article  PubMed  Google Scholar 

  14. C. Duncan – Johnson, E. Donchin, On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology, 14, 456–467, (1977).

    Article  Google Scholar 

  15. R.G. Eason, Visual evoked potential correlates of early neural filtering during selective attention, Bull Psychonomic Soc, 18, 203–206, (1981).

    Google Scholar 

  16. M. Fabiani, G. Gratton, D. Karis, and E. Donchin, Definition, identification and reliability of measurement of the P300 component of the event-related brain potential. Adv Psychophysiol, 2, 1–78, (1987).

    Google Scholar 

  17. L.A. Farwell and E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials, Electroencephalogr Clin Neurophysiol, 70, 510–523, (1988).

    Article  CAS  PubMed  Google Scholar 

  18. M.R. Harter, C. Aine, and C. Schroder, Hemispheric differences in the neural processing of stimulus location and type: Effects of selective attention on visual evoked potentials. Neuropsychologia, 20, 421–438, (1982).

    Article  CAS  PubMed  Google Scholar 

  19. S.A. Hillyard and T.F. Munte, Selective attention to color and location cues: An analysis with event-related brain potentials. Perception Psychophys, 36, 185–198, (1984).

    CAS  Google Scholar 

  20. M. Kaper, P. Meinicke, U. Grossekathoefer, T. Lingner, and H. Ritter, BCI Competition 2003- Data set Iib: Support vector machines for the P300 speller paradigm. IEEE Trans Biomed Eng, 51, 1073–1076, (2004).

    Article  PubMed  Google Scholar 

  21. D.J. Krusienski, E.W. Sellers, , F. Cabestaing, S. Bayoudh, D.J. McFarland, T.M. Vaughan, and J.R. Wolpaw, A comparison of classification techniques for the P300 speller. J Neural Eng, 3, 299–305, (2006).

    Article  PubMed  Google Scholar 

  22. D.J Krusienski, E.W Sellers, D.J McFarland, T.M Vaughan, and J.R. Wolpaw, Toward enhanced P300 speller performance. J Neurosci Methods, 167, 15–21, (2008).

    Article  CAS  PubMed  Google Scholar 

  23. A. Kübler, et al., Self-regulation of slow cortical potentials in completely paralyzed human patients. Neurosci Lett, 252, 171–174, (1998).

    Article  Google Scholar 

  24. A. Kübler, et al., Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64, 1775–1777, (2005).

    Article  PubMed  Google Scholar 

  25. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, and J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature, 442(7099) 164–171, (2006, Juli 13).

    Google Scholar 

  26. G.R. Mangun, S.A. Hillyard, and S.J. Luck, Electrocortical substrates of visual selective attention, In D. Meyer, and S. Kornblum (Eds.), Attention and performance XIV, MIT Press, Cambridge, MA, pp. 219–243, (1993).

    Google Scholar 

  27. D.J. McFarland, D.J. Krusienski, WA. Sarnacki, and J.R. Wolpaw, Emulation of computer mouse control with a noninvasive brain-computer interface. J Neural Eng, 5, 101–110, (2008).

    Article  PubMed  Google Scholar 

  28. D.J. McFarland, D.J. Krusienski, W.A. Sarnacki, and J.R. Wolpaw, Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms. Prog Brain Res, 159, 411–419, (2006)

    Article  PubMed  Google Scholar 

  29. D.J. McFarland, L.A. Miner, T.M. Vaughan, and J.R. Wolpaw, Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr, 12, (2000).

    Google Scholar 

  30. D.J. McFarland, G. W. Neat, R.F. Read, and J.R. Wolpaw, An EEG-based method for graded cursor control. Psychobiology, 21, 77–81, (1993).

    Google Scholar 

  31. D.J. McFarland, W.A Sarnacki, T.M Vaughan, and J.R. Wolpaw, Brain-computer interface (BCI) operation: signal and noise during early training sessions. Clin Neurophysiol, 116, 56–62, (2005).

    Article  PubMed  Google Scholar 

  32. D.J. McFarland, W.A. Sarnacki, and J.R. Wolpaw, Brain-computer interface (BCI) operation: optimizing information transfer rates. Biol Psychol, 63, 237–251, (2003).

    Article  PubMed  Google Scholar 

  33. D.J. McFarland, W.A. Sarnacki, and J.R. Wolpaw, Electroencephalographic (EEG) control of three-dimensional movement. Program No. 778.4. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience. Online, (2008).

    Google Scholar 

  34. D.J. McFarland and J.R. Wolpaw, Sensorimotor rhythm-based brain-computer interface (BCI): Feature selection by regression improves performance, IEEE Trans Neural Syst Rehabil Eng, 13, 372–379, (2005).

    Article  PubMed  Google Scholar 

  35. D.J. McFarland and J.R. Wolpaw, Brain-computer interface operation of robotic and prosthetic devices. IEEE Comput, 41, 52–56, (2008)

    Google Scholar 

  36. P. Meinicke, M. Kaper, F. Hoppe, M. Huemann, and H. Ritter, Improving transfer rates in brain computer interface: A case study. Neural Inf Proc Syst, 1107–1114, (2002).

    Google Scholar 

  37. K.R. Muller, C.W. Anderson, and G E. Birch, Linear and nonlinear methods for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 11, 165–169, (2003).

    Article  PubMed  Google Scholar 

  38. F. Nijboer, E.W. Sellers, J. Mellinger, M.A. Jordan, Matuz, T. A. Furdea, U. Mochty, D.J. Krusienski, T.M. Vaughan, J.R. Wolpaw, N. Birbaumer, and A. Kübler, A brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol, 119, 1909–1916. (2008).

    Article  CAS  PubMed  Google Scholar 

  39. G. Pfurtscheller, D. Flotzinger, and J. Kalcher, Brain-computer interface- a new communication device for handicapped persons. J Microcomput Appl, 16, 293–299, (1993).

    Article  Google Scholar 

  40. G. Pfurtscheller, and F.H. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles, Clin Neurophysiol, 110, 1842–1857, (1999).

    Article  CAS  PubMed  Google Scholar 

  41. F. Piccione, et al., P300-based brain computer interface: Reliability and performance in healthy and paralysed participants. Clin Neurophysiol, 117, 531–537, (2006).

    Article  CAS  PubMed  Google Scholar 

  42. J. Polich, Habituation of P300 from auditory stimuli, Psychobiology, 17, 19–28, (1989).

    Google Scholar 

  43. J. Polich, Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148, (2007).

    Article  PubMed  Google Scholar 

  44. W. Pritchard, The psychophysiology of P300. Psychol Bull, 89, 506–540, (1981).

    Article  CAS  PubMed  Google Scholar 

  45. E.W. Sellers, et al., A P300 brain-computer interface (BCI) for in-home everyday use, Poster presented at the Society for Neuroscience annual meeting, Atlanta, GA, (2006).

    Google Scholar 

  46. E.W. Sellers et al., Brain-Computer Interface for people with ALS: long-term daily use in the home environment, Program No. 414.5. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience. Online, (2007).

    Google Scholar 

  47. E.W. Sellers and M. Donchin, A P300-based brain-computer interface: Initial tests by ALS patients, Clinical Neurophysiology. Clin Neurophysiology, 117, 538–548, (2006).

    Article  Google Scholar 

  48. E.W Sellers, D.J Krusienski, D.J McFarland, T.M Vaughan, and J.R. Wolpaw, A P300 event-related potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biol Psychol, 73, 242–252, (2006).

    Article  PubMed  Google Scholar 

  49. E.E. Sutter, The brain response interface: communication through visually guided electrical brain responses. J Microcomput Appl, 15, 31–45, (1992).

    Article  Google Scholar 

  50. S. Sutton M. Braren J. Zubin, and E.R. John, Evoked-potential correlates of stimulus uncertainty. Science, 150, 1187–1188, (1965).

    Article  CAS  PubMed  Google Scholar 

  51. D.M Taylor, S.I Tillery, A.B. Schwartz, Direct cortical control fo 3D reuroprosthetic devices. Science, 296, 1817–1818, (2002).

    Article  Google Scholar 

  52. T.M. Vaughan, et al., aily use of an EEG-based brain-computer interface by people with ALS: technical requirements and caretaker training, Program No. 414.6. Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, online, (2007).

    Google Scholar 

  53. T.M Vaughan D.J. McFarland G. Schalk E. Sellers, and J.R. Wolpaw, Multichannel data from a brain-computer interface (BCI) speller using a P300 (i.e., oddball) protocol, Society for Neuroscience Abstracts, 28, (2003).

    Google Scholar 

  54. T.M Vaughan D.J McFarland G. Schalk W.A Sarnacki L. Robinson, and J.R Wolpaw EEG-based brain-computer interface: development of a speller application. Soc Neuroscie Abs, 26, (2001).

    Google Scholar 

  55. T.M.Vaughan et al., The Wadsworth BCI research and development program: At home with BCI. IEEE Trans Rehabil Eng, l(14), 229–233, (2006).

    Google Scholar 

  56. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and T.M. Vaughan, Brain-computer interfaces for communication and control. Clin Neurophysiol, 113, 767–791, (2002).

    Article  PubMed  Google Scholar 

  57. J.R. Wolpaw and D.J. McFarland, Control of a two-dimensional movement signal by a non-invasive brain-computer interface in humans. Proc Natl Acad Sci USA, 101, 17849–17854, (2004).

    Article  CAS  PubMed  Google Scholar 

  58. JR. Wolpaw, et al., Brain-computer interface technology: a review of the first international meeting, IEEE Trans Rehabil Eng, 8, 164–173, (2000).

    Article  CAS  PubMed  Google Scholar 

  59. J.R. Wolpaw and D.J. McFarland, Multichannel EEG-based brain-computer communication. Electroencephalogr Clin Neurophysiol, 90, 444–449, (1994).

    Article  CAS  PubMed  Google Scholar 

  60. J.R. Wolpaw, D.J. McFarland, G.W. Neat, and C.A. Forneris, An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol, 78, 252–259, (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health (HD30146, EB00856, EB006356), The James S. McDonnell Foundation, The Altran Foundation, The ALS Hope Foundation, The NEC Foundation, and The Brain Communication Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Sellers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sellers, E.W., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R. (2009). BCIs in the Laboratory and at Home: The Wadsworth Research Program. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds) Brain-Computer Interfaces. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02091-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02091-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02090-2

  • Online ISBN: 978-3-642-02091-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics