Skip to main content

Dynamics of Sensorimotor Oscillations in a Motor Task

  • Chapter
  • First Online:
Brain-Computer Interfaces

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Many BCI systems rely on imagined movement. The brain activity associated with real or imagined movement produces reliable changes in the EEG. Therefore, many people can use BCI systems by imagining movements to convey information. The EEG has many regular rhythms. The most famous are the occipital alpha rhythm and the central mu and beta rhythms. People can desynchronize the alpha rhythm (that is, produce weaker alpha activity) by being alert, and can increase alpha activity by closing their eyes and relaxing. Sensory processing or motor behavior leads to EEG desynchronization or blocking of central beta and mu rhythms, as originally reported by Berger [1], Jasper and Andrew [2] and Jasper and Penfield [3]. This desynchronization reflects a decrease of oscillatory activity related to an internally or externally-paced event and is known as Event–Related Desynchronization (ERD, [4]). The opposite, namely the increase of rhythmic activity, was termed Event-Related Synchronization (ERS, [5]). ERD and ERS are characterized by fairly localized topography and frequency specificity [6]. Both phenomena can be studied through topographiuthc maps, time courses, and time-frequency representations (ERD maps, [7]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Berger, Uber das Elektrenkephalogramm des Menschen II. J Psychol Neurol, 40, 160–179, (1930).

    Google Scholar 

  2. H.H. Jasper and H.L. Andrew, Electro encephalography III. Normal differentiation of occipital and precentral regions in man. Arch Neurol Psychiatry, 39, 96–115, (1938).

    Google Scholar 

  3. H.H. Jasper and W. Penfield, Electrocorticograms in man: effect of the voluntary movement upon the electrical activity of the precentral gyrus. Arch Psychiat Z. Neurol, 183, 163–174, (1949).

    Google Scholar 

  4. G. Pfurtscheller and A. Aranibar, Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movements. Electroencephalogr Clin Neurophysiol, 46, 138–146, (1979).

    Article  CAS  PubMed  Google Scholar 

  5. G. Pfurtscheller, Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol, 83, 62–69, (1992).

    Article  CAS  PubMed  Google Scholar 

  6. G. Pfurtscheller and F.H. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 110, 1842–1857, (1999).

    Article  CAS  PubMed  Google Scholar 

  7. B. Graimann, J.E. Huggins, S.P. Levine, et al., Visualization of significant ERD/ERS patterns multichannel EEG and ECoG data. Clin Neurophysiol, 113, 43–47, (2002).

    Article  CAS  PubMed  Google Scholar 

  8. G. Pfurtscheller and F. H. L. da Silva, Handbook of electroencephalography and clinical neurophysiology, vol. 6, 1st edn, 1999 ed, Elsevier, New York, (1999).

    Google Scholar 

  9. C. Neuper, R. Scherer, S.C. Wriessnegger, et al., Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain computer interface, Clin Neurophysiol, 120, 239–47, (2009).

    Article  PubMed  Google Scholar 

  10. G. Pfurtscheller and T. Solis-Escalante, Could the beta rebound in the EEG be suitable to realize a “brain switch”? Clin Neurophysiol, 120, 24–9, (2009).

    Article  CAS  PubMed  Google Scholar 

  11. G. Pfurtscheller, R. Scherer, G.R. Müller-Putz, F.H. Lopes da Silva, Short-lived brain state after cued motor imagery in naive subjects. Eur J Neurosci,28, 1419–26, (2008).

    Article  CAS  PubMed  Google Scholar 

  12. G. Pfurtscheller and C. Neuper, Event–related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett, 174, 93–96, (1994).

    Article  CAS  PubMed  Google Scholar 

  13. S. Salenius, R. Salmelin, C. Neuper, et al., Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neurosci Lett, 213, 75–78, (1996).

    Article  CAS  PubMed  Google Scholar 

  14. N.E. Crone, D.L. Miglioretti, B. Gordon, et al., Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain, 121, 2301–2315, (1998).

    Article  PubMed  Google Scholar 

  15. G. Pfurtscheller, B. Graimann, J.E. Huggins, et al., Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol, 114, 1226–1236, (2003).

    Article  CAS  PubMed  Google Scholar 

  16. J.E. Guieu, J.L. Bourriez, P. Derambure, et al., Temporal and spatial aspects of event-related desynchronization nand movement-related cortical potentials, Handbook Electroencephalogr Clin Neurophysiol, 6, 279–290, (1999).

    Google Scholar 

  17. R. Beisteiner, P. Höllinger, G. Lindinger, et al., Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr Clin Neurophysiol, 96, 83–193, (1995).

    Google Scholar 

  18. G. Pfurtscheller and C. Neuper, Motor imagery activates primary sensimotor area in humans. Neurosci Lett, 239, 65–68, (1997).

    Article  CAS  PubMed  Google Scholar 

  19. G. Pfurtscheller and A. Berghold, Patterns of cortical activation during planning of voluntary movement. Electroencephalogr Clin Neurophysiol, 72, 250–258, (1989).

    Article  CAS  PubMed  Google Scholar 

  20. P. Derambure, L. Defebvre, K. Dujardin, et al., Effect of aging on the spatio temporal pattern of event related desynchronization during a voluntary movement. Electroencephalogr Clin Neurophysiol, 89, 197–203, (1993).

    Article  CAS  PubMed  Google Scholar 

  21. C. Toro, G. Deuschl, R. Thatcher, et al., Event–related desynchronization and movement related cortical potentials on the ECoG and EEG. Electroencephalogr Clin Neurophysiol, 93, 380–389, (1994).

    Article  CAS  PubMed  Google Scholar 

  22. A. Stancàk Jr and G. Pfurtscheller, Event-related desynchronization of central beta-rhythms during brisk and slow self-paced finger movements of dominant and nondominant hand. Cogn Brain Res, 4, 171–183, (1996).

    Article  Google Scholar 

  23. F. Cassim, C. Monaca, W. Szurhaj, et al., Does post-movement beta synchronization reflect an idling motor cortex? Neuroreport, 12, 3859–3863, (2001).

    Article  CAS  PubMed  Google Scholar 

  24. C. Neuper and G. Pfurtscheller, Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol, 43, 41–58, (2001).

    Article  CAS  PubMed  Google Scholar 

  25. M. Alegre, A. Labarga, I.G. Gurtubay, et al., Beta electroencephalograph changes during passive movements: sensory afferences contribute to beta event-related desynchronization in humans. Neurosci Lett, 331, 29–32, (2002).

    Article  CAS  PubMed  Google Scholar 

  26. G. Pfurtscheller, C. Neuper, and G. Krausz, Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clin Neurophysiol, 111, 1873–1879, (2000).

    Article  CAS  PubMed  Google Scholar 

  27. G. Pfurtscheller, C. Neuper, D. Flotzinger, et al., EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol, 103, 642–651, (1997).

    Article  CAS  PubMed  Google Scholar 

  28. L. Leocani, G. Magnani, and G. Comi, Event-related desynchronization during execution, imagination and withholding of movement. In: G. Pfurtscheller and F. Lopes da Silva (Eds.), Event-related desynchronization. Handbook of electroenceph and clinical neurophysiology, vol. 6, Elsevier, pp. 291–301, (1999).

    Google Scholar 

  29. M. Jeannerod, Mental imagery in the motor context. Neuropsychologia, 33 (11), 1419–1432, (1995).

    Article  CAS  PubMed  Google Scholar 

  30. J. Decety, The neurophysiological basis of motor imagery, Behav Brain Res, 77, 45–52, (1996).

    Article  CAS  PubMed  Google Scholar 

  31. C. Neuper and G. Pfurtscheller, Motor imagery and ERD. In: G. Pfurtscheller and F. Lopes da Silva (Eds.), Event-related desynchronization. Handbook of electroenceph and clinical neurophysiology, vol. 6, Elsevier, pp. 303–325, (1999).

    Google Scholar 

  32. M. Roth, J. Decety, M. Raybaudi, et al., Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. Neuroreport, 7, 1280–1284, (1996).

    Article  CAS  PubMed  Google Scholar 

  33. C.A. Porro, M.P. Francescato, V. Cettolo, et al., Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. Int J Neurosci Lett, 16, 7688–7698, (1996).

    CAS  Google Scholar 

  34. M. Lotze, P. Montoya, M. Erb, et al., Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci, 11, 491–501, (1999).

    Article  CAS  PubMed  Google Scholar 

  35. E. Gerardin, A. Sirigu, S. Lehéricy, et al., Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex, 10, 1093–1104, (2000).

    Article  CAS  PubMed  Google Scholar 

  36. H.H. Ehrsson, S. Geyer, and E. Naito, Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol, 90, 3304–3316, (2003).

    Article  PubMed  Google Scholar 

  37. S. Rossi, P. Pasqualetti, F. Tecchio, et al., Corticospinal excitability modulation during mental simulation of wrist movements in human subjects. Neurosci Lett, 243, 147–151, (1998).

    Article  CAS  PubMed  Google Scholar 

  38. P. Suffczynski, P.J.M. Pijn, G. Pfurtscheller, et al., Event-related dynamics of alpha band rhythms: A neuronal network model of focal ERD/surround ERS, In: G. Pfurtscheller and F. Lopes da Silva (Eds.), Event-related desynchronization. Handbook of electroenceph and clinical neurophysiology, vol. 6, Elsevier, pp. 67–85, (1999).

    Google Scholar 

  39. G. Pfurtscheller, C. Brunner, A. Schlögl, et al., Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31, 153–159, (2006).

    Article  CAS  PubMed  Google Scholar 

  40. M. Steriade and R. Llinas, The functional states of the thalamus and the associated neuronal interplay. Phys Rev, 68, 649–742, (1988).

    CAS  Google Scholar 

  41. P. Zhuang, C. Toro, J. Grafman, et al., Event–related desynchronization (ERD) in the alpha frequency during development of implicit and explicit learning. Electroencephalogr Clin Neurophysiol, 102, 374–381, (1997).

    Article  CAS  PubMed  Google Scholar 

  42. A.P. Leone, N. Dang, L.G. Cohen, et al., Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol, 74, 1037–1045, (1995).

    Google Scholar 

  43. R. Cooper, A.L. Winter, H.J. Crow, et al., Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol, 18, 217–228, (1965).

    Article  CAS  PubMed  Google Scholar 

  44. F.L. da Silva, Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol, 79, 81–93, (1991).

    Article  Google Scholar 

  45. W. Klimesch, Memory processes, brain oscillations and EEG synchronization. J Psychophysiol, 24, 61–100, (1996).

    Article  CAS  Google Scholar 

  46. F. Hummel, F. Andres, E. Altenmuller, et al., Inhibitory control of acquired motor programmes in the human brain. Brain, 125, 404–420, (2002).

    Article  PubMed  Google Scholar 

  47. E.D. Adrian and B.H. Matthews, The Berger rhythm: Potential changes from the occipital lobes in man. Brain, 57, 355–385, (1934).

    Article  Google Scholar 

  48. M.H. Case and R.M. Harper, Somatomotor and visceromotor correlates of operantly conditioned 12–14 c/s sensorimotor cortical activity. Electroencephalogr Clin Neurophysiol, 31, 85–92, (1971).

    Article  Google Scholar 

  49. W.N. Kuhlman, Functional topography of the human mu rhythm. Electroencephalogr Clin Neurophysiol, 44, 83–93, (1978).

    Article  CAS  PubMed  Google Scholar 

  50. C. Gerloff, J. Hadley, J. Richard, et al., Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain, 121, 1513–1531, (1998).

    Article  PubMed  Google Scholar 

  51. Y. Koshino and E. Niedermeyer, Enhancement of rolandic mu rhythm by pattern vision. Electroencephalogr Clin Neurophysiol, 38, 535–538, (1975).

    Article  CAS  PubMed  Google Scholar 

  52. N. Kreitmann and J.C. Shaw, Experimental enhancement of alpha activity. Electroencephalogr Clin Neurophysiol, 18, 147–155, (1965).

    Article  Google Scholar 

  53. C. Neuper and W. Klimesch, Event-related dynamics of brain oscillations: Elsevier, (2006).

    Google Scholar 

  54. W.C. Drevets, H. Burton, T.O. Videen, et al., Blood flow changes in human somatosensory cortex during anticipated stimulation. Nature, 373, 249–252, (1995).

    Article  CAS  PubMed  Google Scholar 

  55. F. Hummel, R. Saur, S. Lasogga, et al., To act or not to act. Neural correlates of executive control of learned motor behavior. Neuroimage, 23, 1391–1401, (2004).

    Article  PubMed  Google Scholar 

  56. F. Hummel and C. Gerloff, Interregional long-range and short-range synchrony: a basis for complex sensorimotor processing. Progr Brain Res, 159, 223–236, (2006).

    Article  Google Scholar 

  57. R. Salmelin, M. Hamalainen, M. Kajola, et al., Functional segregation of movement related rhythmic activity in the human brain. NeuroImage, 2, 237–243, (1995).

    Article  CAS  PubMed  Google Scholar 

  58. G. Pfurtscheller and F.H.L. da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 110, 1842–1857, (1999).

    Article  CAS  PubMed  Google Scholar 

  59. C. Neuper and G. Pfurtscheller, Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas. Clin Neurophysiol, 112, 2084–2097, (2001).

    Article  CAS  PubMed  Google Scholar 

  60. G.R. Müller, C. Neuper, R. Rupp, et al., Event-related beta EEG changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neurosci Lett, 340, 143–147, (2003).

    Article  PubMed  Google Scholar 

  61. G. Pfurtscheller, G. Krausz, and C. Neuper, Mechanical stimulation of the fingertip can induce bursts of beta oscillations in sensorimotor areas. J Clin Neurophysiol, 18, 559–564, (2001).

    Article  CAS  PubMed  Google Scholar 

  62. G. Pfurtscheller, C. Neuper, C. Brunner, et al., Beta rebound after different types of motor imagery in man. Neurosci Lett, 378, 156–159, (2005).

    Article  CAS  PubMed  Google Scholar 

  63. C. Neuper and G. Pfurtscheller, Motor imagery and ERD, In: G. Pfurtscheller and F. H. L. da Silva (Eds.), Event-related desynchronization. Handbook of electroenceph and clinical neurophysiology, vol. 6, Elsevier, Amsterdam,, pp. 303–325, (1999).

    Google Scholar 

  64. W. Singer, Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Psychophysiol, 55, 349–374, (1993).

    Article  CAS  Google Scholar 

  65. R. Chen, B. Corwell, and M. Hallett, Modulation of motor cortex excitability by median nerve and digit stimulation. Expert Rev Brain Res, 129, 77–86, (1999).

    Article  CAS  Google Scholar 

  66. A. Schnitzler, S. Salenius, R. Salmelin, et al., Involvement of primary motor cortex in motor imagery: a neuromagnetic study. NeuroImage, 6, 201–208, (1997).

    Article  CAS  PubMed  Google Scholar 

  67. G. Pfurtscheller, M. Wörtz, G.R. Müller, et al., Contrasting behavior of beta event-related synchronization and somatosensory evoked potential after median nerve stimulation during finger manipulation in man. Neurosci Lett, 323, 113–116, (2002).

    Article  CAS  PubMed  Google Scholar 

  68. A.P. Georgopoulos, J.F. Kalaska, R. Caminiti, et al., On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J NeuroSci Lett, 2, 1527–1537, (1982).

    CAS  Google Scholar 

  69. Z.J. Koles, M.S. Lazar, and S.Z. Zhou, Spatial patterns underlying population differences in the background EEG. Brain Topogr, 2, 275–284, (1990).

    Article  CAS  PubMed  Google Scholar 

  70. J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol, 110, 787–798, (1999).

    Article  PubMed  Google Scholar 

  71. J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, Classification of movement-related EEG in a memorized delay task experiment. Clin Neurophysiol, 111, 1353–1365, (2000).

    Article  PubMed  Google Scholar 

  72. G. Pfurtscheller, C. Neuper, H. Ramoser, et al., Visually guided motor imagery activates sensorimotor areas in humans. Neurosci Lett, 269, 153–156, (1999).

    Article  CAS  PubMed  Google Scholar 

  73. E. Naito, P.E. Roland, and H.H. Ehrsson, I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement, Neuron, 36, 979–988, (2002).

    Article  CAS  PubMed  Google Scholar 

  74. J. Annett, Motor imagery: perception or action? Neuropsychologia, 33, 1395–1417, (1995).

    Article  CAS  PubMed  Google Scholar 

  75. H.J. Gastaut and J. Bert, EEG changes during cinematographic presentation; moving picture activation of the EEG. Electroencephalogr Clin Neurophysiol, 6, 433–444, (1954).

    Article  CAS  PubMed  Google Scholar 

  76. S. Cochin, C. Barthelemy, B. Lejeune, et al., Perception of motion and qEEG activity in human adults. Electroencephalogr Clin Neurophysiol, 107, 287–295, (1998).

    Article  CAS  PubMed  Google Scholar 

  77. S.D. Muthukumaraswamy, B.W. Johnson, and N.A. McNair, Mu rhythm modulation during observation of an object-directed grasp. Cogn Brain Res, 19, 195–201, (2004).

    Article  Google Scholar 

  78. E.L. Altschuler, A. Vankov, E.M. Hubbard, et al., Mu wave blocking by observation of movement and its possible use as a tool to study theory of other minds. Soc Neurosci Abstr, 26, 68, (2000).

    Google Scholar 

  79. G. Pfurtscheller, R.H. Grabner, C. Brunner, et al., Phasic heart rate changes during word translation of different difficulties. Psychophysiology, 44, 807–813, (2007).

    Article  PubMed  Google Scholar 

  80. G. Pfurtscheller, R. Scherer, R. Leeb, et al., Viewing moving objects in Virtual Reality can change the dynamics of sensorimotor EEG rhythms. Presence-Teleop Virt Environ, 16, 111–118, (2007).

    Article  Google Scholar 

  81. J.A. Pineda, The functional significance of mu rhythms: translating seeing and hearing into doing. Brain Res, 50, 57–68, (2005).

    Article  Google Scholar 

  82. R. Hari, Action–perception connection and the cortical mu rhythm. Prog Brain Res, 159, 253–260, (2006).

    Article  PubMed  Google Scholar 

  83. V. Gallese, L. Fadiga, L. Fogassi, et al., Action recognition in the premotor cortex. Brain, 119, 593–609, (1996).

    Article  PubMed  Google Scholar 

  84. G. Rizzolatti, L. Fadiga, V. Gallese, et al., Premotor cortex and the recognition of motor actions. Cogn Brain Res, 3, 131–141, (1996).

    Article  CAS  Google Scholar 

  85. G. Rizzolatti, L. Fogassi, and V. Gallese, Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci, 2, 661–670, (2001).

    Article  CAS  PubMed  Google Scholar 

  86. G. Buccino, F. Binkofski, G.R. Fink, et al., Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci, 13, 400–404, (2001).

    CAS  PubMed  Google Scholar 

  87. J. Grézes and J. Decety, Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Human Brain Mapp, 12, 1–19, (2001).

    Article  Google Scholar 

  88. N. Nishitani and R. Hari, Temporal dynamics of cortical representation for action, Proc Natl Acad Sci, 97, 913–918, (2000).

    Article  CAS  PubMed  Google Scholar 

  89. J.M. Kilner and C.D. Frith, A possible role for primary motor cortex during action observation, Proc Natl Acad Sci, 104, 8683–8684, (2007).

    Article  CAS  PubMed  Google Scholar 

  90. F.L. da Silva, Event-related neural activities: what about phase? Prog Brain Res, 159, 3–17, (2006).

    Article  Google Scholar 

  91. R. Hari, N. Forss, S. Avikainen, et al., Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci, 95, 15061–15065, (1998).

    Article  CAS  PubMed  Google Scholar 

  92. J. Järveläinen, M. Schürmann, S. Avikainen, et al., Stronger reactivity of the human primary motor cortex during observation of live rather than video motor acts. Neuroreport, 12, 3493–3495, (2001).

    Article  PubMed  Google Scholar 

  93. G.R. Müller-Putz, R. Scherer, G. Pfurtscheller, et al., Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation, Biomedizinische Technik, 51, 57–63, (2006).

    Article  PubMed  Google Scholar 

  94. G. Pfurtscheller, C. Guger, G. Müller, et al., Brain oscillations control hand orthosis in a tetraplegic, Neuroscience Letters, 292, 211–214, (2000).

    Article  CAS  PubMed  Google Scholar 

  95. G. Pfurtscheller, G.R. Müller, J. Pfurtscheller, et al., “Thought”-control of functional electrical stimulation to restore handgrasp in a patient with tetraplegia, Neurosci Lett, 351, 33–36, (2003).

    Article  CAS  PubMed  Google Scholar 

  96. G.R. Müller-Putz, R. Scherer, G. Pfurtscheller, et al., EEG-based neuroprosthesis control: a step towards clinical practice, Neurosci Lett, 382, 169–174, (2005).

    Article  PubMed  Google Scholar 

  97. C. Neuper, R. Scherer, S. Wriessnegger, and G. Pfurtscheller. Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin. Neurophysiol, 121(8), 239–247, (2009).

    Google Scholar 

Download references

Acknowledgment

This research was partly financed by PRESENCCIA, an EU-funded Integrated Project under the IST program (Project No. 27731) and by NeuroCenter Styria, a grant of the state government of Styria (Zukunftsfonds, Project No. PN4055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Pfurtscheller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfurtscheller, G., Neuper, C. (2009). Dynamics of Sensorimotor Oscillations in a Motor Task. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds) Brain-Computer Interfaces. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02091-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02091-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02090-2

  • Online ISBN: 978-3-642-02091-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics