Skip to main content

Brain–Computer Interfaces for Communication and Control in Locked-in Patients

  • Chapter
  • First Online:

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Most Brain–Computer Interface (BCI) research aims at helping people who are severely paralyzed to regain control over their environment and to communicate with their social environment. There has been a tremendous increase in BCI research the last years, which might lead to the belief that we are close to a commercially available BCI applications to patients. However, studies with users from the future target group (those who are indeed paralyzed) are still outnumbered by studies on technical aspects of BCI applications and studies with healthy young participants. This might explain why the number of patients who use a BCI in daily life, without experts from a BCI group being present, can be counted on one hand.

If you really want to help somebody, first you must find out where he is. This is the secret of caring. If you cannot do that, it is only an illusion if you think you can help another human being. Helping somebody implies you understanding more than he does, but first of all you must understand what he understands. 1

1Sören Kierkegaard: The point of view from my work as an author, 39.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Most ALS patients at some point will use a non-invasive respiration mask, which can be placed over the mouth and nose. Most patients use this during the night to avoid fatigue in daytime.

  2. 2.

    The El Escorial consists of a set of medical criteria used by physicians that classify patients with amyotrophic lateral sclerosis into categories reflecting different levels of diagnostic certainty. Common diagnosis are “probable ALS” (as in the case of Dr. Broermann), whereas hardly any patient receives the diagnose “definite ALS”. Diagnosing ALS can take a long time (years!). This uncertainty is not only difficult for the patient and his/her caregivers but also for the physician.

  3. 3.

    Patients with ALS are often constipated. Caregivers often need to help initiate defecation. Sphincter control is often one of the last muscles over which ALS patients lose voluntary control and might even be used for signalling yes/no [51].

  4. 4.

    With a tracheotomy air no longer runs through the larynx. An add-on speech cannula that uses incoming air instead of outgoing air can enable a person to continue to produce speech. In this case, Mrs. Broermann says her “phonetic” is a mystery to her fellow men, because it’s difficult to understand her whispery and raspy voice.

References

  1. M. Cudkowicz, M. Qureshi, and J. Shefner, Measures and markers in amyotrophic lateral sclerosis. NeuroRx, 1(2), 273–283, (2004).

    Article  PubMed  Google Scholar 

  2. B.R. Brooks, Clinical epidemiology of amyotrophic lateral sclerosis. Neurol Clin, 14(2), 399–420, (1996).

    Article  CAS  PubMed  Google Scholar 

  3. H. Hayashi and E.A. Oppenheimer, ALS patients on TPPV: Totally locked-in state, neurologic findings and ethical implications. Neurology, 61(1), 135–137, (2003).

    PubMed  Google Scholar 

  4. N. Buchardi, O. Rauprich, and J. Vollmann, Patienten Selbstbestimmung und Patientenverfügungen aus der Sicht von Patienten mit amyotropher Lateralsklerose: Eine qualitative empirische Studie. Ethik der Medizin, 15, 7–21, (2004).

    Article  Google Scholar 

  5. P.B. Bascom and S.W. Tolle, Responding to requests for physician-assisted suicide: These are uncharted waters for both of us. JAMA, 288(1), 91–98, (2002).

    Article  PubMed  Google Scholar 

  6. F.J. Erbguth, Ethische und juristische Aspekte der intensicmedizinischen Behandlung bei chronisch-progredienten neuromuskulären Erkrankungen. Intensivmedizin, 40, 464–657, (2003).

    Article  Google Scholar 

  7. A. Kübler, C. Weber and N. Birbaumer, Locked-in – freigegeben für den Tod. Wenn nur Denken und Fühlen bleiben – Neuroethik des Eingeschlossenseins. Zeitschrift für Medizinische Ethik, 52, 57–70, (2006).

    Google Scholar 

  8. G.D. Borasio, Discontinuing ventilation of patients with amyotrophic lateral sclerosis. Medical, legal and ethical aspects. Medizinische Klinik, 91(2), 51–52, (1996).

    PubMed  Google Scholar 

  9. C. Neudert, D. Oliver, M. Wasner, G.D. Borasio, The course of the terminal phase in patients with amyotrophic lateral sclerosis. J Neurol, 248(7), 612–616, (2001).

    Article  CAS  PubMed  Google Scholar 

  10. A.H. Moss, Home ventilation for amyotrophic lateral sclerosis patients: outcomes, costs, and patient, family, and physician attitudes. Neurology, 43(2), 438–443, (1993).

    CAS  PubMed  Google Scholar 

  11. E.R. McDonald, S.A. Wiedenfield, A. Hillel, C.L. Carpenter, R.A. Walter, Survival in amyotrophic lateral sclerosis. The role of psychological factors. Arch Neurol 51(1), 17–23, (1994).

    CAS  PubMed  Google Scholar 

  12. A. Kübler, S. Winters, A.C. Ludolph, M. Hautzinger, N. Birbaumer, Severity of depressive symptoms and quality of life in patients with amyotrophic lateral sclerosis. Neurorehabil Neural Repair, 19, 1–12, (2005).

    Google Scholar 

  13. Z. Simmons, B.A. Bremer, R.A. Robbins, S.M. Walsh, S. Fischer, Quality of life in ALS depends on factors other than strength and physical function. Neurology, 55(3), 388–392, (2000).

    CAS  PubMed  Google Scholar 

  14. R.A. Robbins, Z. Simmons, B.A. Bremer, S.M. Walsh, S. Fischer, Quality of life in ALS is maintained as physical function declines. Neurology, 56(4), 442–444, (2001).

    CAS  PubMed  Google Scholar 

  15. A. Chio, G.A., Montuschi, A. Calvo, N. Di Vito, P. Ghiglione, R. Mutani, A cross sectional study on determinants of quality of life in ALS. J Neurol Neurosurg Psychiatr, 75(11), 1597–601, (2004).

    Article  CAS  PubMed  Google Scholar 

  16. A. Kurt, F. Nijboer, T. Matuz, A. Kübler, Depression and anxiety in individuals with amyotrophic lateral sclerosis: epidemiology and management. CNS Drugs, 21(4), 279–291, (2007).

    Article  PubMed  Google Scholar 

  17. A. Kübler, S. Winter, J. Kaiser, N. Birbaumer, M. Hautzinger, Das ALS-Depressionsinventar (ADI): Ein Fragebogen zur Messung von Depression bei degenerativen neurologischen Erkrankungen (amyotrophe Lateralsklerose). Zeit KL Psych Psychoth, 34(1), 19–26, (2005).

    Article  Google Scholar 

  18. C. Paillisse, L. Lacomblez, M. Dib, G. Bensimon, S. Garcia-Acosta, V. Meininger, Prognostic factors for survival in amyotrophic lateral sclerosis patients treated with riluzole. Amyotroph Lateral Scler Other Motor Neuron Disord, 6(1), 37–44, (2005).

    Article  CAS  PubMed  Google Scholar 

  19. A. Kubler, and N. Birbaumer (2008) Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol, 119, 2658–2666.

    Google Scholar 

  20. J.D. Bauby, Le scaphandre et le papillon. Editions Robert Laffont, Paris, (1997).

    Google Scholar 

  21. N. Birbaumer, Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology, 43(6), 517–532, (2006).

    Article  PubMed  Google Scholar 

  22. J.R. Bach, Amyotrophic lateral sclerosis – communication status and survival with ventilatory support. Am J Phys Med Rehabil, 72(6), 343–349, (1993).

    Article  CAS  PubMed  Google Scholar 

  23. N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, H. Flor, A spelling device for the paralysed. Nature, 398(6725), 297–298, (1999).

    Article  CAS  PubMed  Google Scholar 

  24. A. Kübler, N. Neumann, J. Kaiser, B. Kotchoubey, T. Hinterberger, and N. Birbaumer, Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Arch Phys Med Rehabil, 82, 1533–1539, (2001).

    Google Scholar 

  25. A. Kübler, N. Neumann, J. Kaiser, B. Kotchoubey, T. Hinterberger, N. Birbaumer, Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Arch Phys Med Rehabil, 82(11), 1533–1539, (2001).

    Article  PubMed  Google Scholar 

  26. N. Neumann, A. Kübler, J. Kaiser, T. Hinterberger, N. Birbaumer, Conscious perception of brain states: Mental strategies for brain-computer communication. Neuropsychologia, 41(8), 1028–1036, (2003).

    Article  PubMed  Google Scholar 

  27. T.M. Vaughan, D.J. McFarland, G. Schalk, W.A. Sarnacki, D.J. Krusienski, E.W. Sellers, J.R. Wolpaw, The Wadsworth BCI Research and Development Program: At home with BCI. IEEE Trans Neural Syst Rehabil Eng, 14(2), 229–233, (2006).

    Article  PubMed  Google Scholar 

  28. T. Hinterberger, S. Schmidt, N. Neumann., J. Mellinger, B. Blankertz, G. Curio, N. Birbaumer, Brain-computer communication and slow cortical potentials. IEEE Trans Biomed Eng, 51(6), 1011–1018, (2004).

    Article  PubMed  Google Scholar 

  29. A. Kübler, B. Kotchoubey, T. Hinterbebrg, N. Ghanayim, J. Perelmouter, M. Schauer, C. Fritsch, E. Taub, N. Birbaumer, The thought translation device: A neurophysiological approach to communication in total motor paralysis. Exp Brain Res, 124, 223–232, (1999).

    Article  PubMed  Google Scholar 

  30. A. Kübler, F. Nijboer, K. Mellinger, T.M. Vaughan, H. Pawelzik, G. Schalk, D.J. McFarland, N. Birbaumer, J.R. Wolpaw, Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64(10), 1775–1777, (2005).

    Article  PubMed  Google Scholar 

  31. C. Neuper, R. Scherer, M. Reiner, G. Pfurtscheller, Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res, 25(3), 668–677, (2005).

    Article  PubMed  Google Scholar 

  32. G. Pfurtscheller, B. Graimann, J.E. Huggins, S.P. Levine, Brain-computer communication based on the dynamics of brain oscillations. Suppl Clin Neurophysiol, 57, 583–591, (2004).

    Article  CAS  PubMed  Google Scholar 

  33. D.J. McFarland, G.W. Neat, R.F. Read, J.R. Wolpaw, An EEG-based method for graded cursor control. Psychobiology, 21(1), 77–81, (1993).

    Google Scholar 

  34. F. Nijboer, E.W. Sellers, J. Mellinger, T. Matuz, S. Halder, U. Mochty, M.A. Jordan, D.J. Krusienski, J.R. Wolpaw, N. Birbaumer, A. Kübler, P300-based brain-computer interface (BCI) performance in people with ALS. Clin Neurophys, 119(8), 1909–1916, (2008).

    Article  CAS  Google Scholar 

  35. U. Hoffmann, J.M. Vesin, T. Ebrahimi, K. Diserens, An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods, 167(1), 115–25, (2008).

    Article  PubMed  Google Scholar 

  36. E.W. Sellers, A. Kubler, and E. Donchin, Brain-computer interface research at the University of South Florida Cognitive Psychophysiology Laboratory: the P300 Speller. IEEE Trans Neural Syst Rehabil Eng, 14, 221–224, (2006).

    Google Scholar 

  37. A. Kübler, F. Nijboer, and N. Birbaumer, Brain-computer interfaces for communication and motor control – Perspectives on clinical applications. In G. Dornhege, et al. (Eds.), Toward brain-computer interfacing, The MIT Press, Cambridge, MA, Pp. 373–392, (2007).

    Google Scholar 

  38. N.J. Hill, T.N. Lal, M. Schoeder, T. Hinterberger, B. Wilhelm, F. Nijboer, U. Mochty, G. Widman, C. Elger, B. Schoelkopf, A. Kübler, N. Birbaumer, Classifying EEG and ECoG signals without subject training for fast BCI implementation: Comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans Neural Syst Rehabil Eng, 14(2), 183–186, (2006).

    Article  PubMed  Google Scholar 

  39. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain-computer interfaces for communication and control. Clin Neurophysiol, 113(6), 767–791, (2002).

    Article  PubMed  Google Scholar 

  40. B.R. Dworkin, and N.E. Miller, Failure to replicate visceral learning in the acute curarized rat preparation. Behav Neurosci, 100(3), 299–314, (1986).

    Article  CAS  PubMed  Google Scholar 

  41. E.A. Curran and M.J. Stokes: Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn, 51(3), 326–336, (2003).

    Article  PubMed  Google Scholar 

  42. N. Neumann, Gehirn-Computer-Kommunikation, Einflussfaktoren der Selbstregulation langsamer kortikaler Hirnpotentiale, in Fakultär für Sozial- und Verhaltenswissenschaften., Eberhard-Karlsuniversität Tübingen: Tübingen, (2001).

    Google Scholar 

  43. N. Neumann and N. Birbaumer, Predictors of successful self control during brain-computer communication. J Neurol Neurosurg Psychiatr, 74(8), 1117–1121, (2003).

    Article  CAS  PubMed  Google Scholar 

  44. N. Neumann and A. Kübler, Training locked-in patients: A challenge for the use of brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 11(2), 169–172, (2003).

    Article  PubMed  Google Scholar 

  45. F. Nijboer, A. Furdea, I. Gunst, J. Mellinger, D.J. McFarland, N. Birbaumer, A. Kübler, An auditory brain-computer interface (BCI). J Neurosci Methods, 167(1), 43–50, (2008).

    Article  PubMed  Google Scholar 

  46. T. Hinterberger, N. Neumann, M. Pham, A. Kübler, A. Grether, N. Hofmayer, B. Wilhelm, H. Flor, N. Birbaumer, A multimodal brain-based feedback and communication system. Exp Brain Res, 154(4), 521–526, (2004).

    Article  CAS  PubMed  Google Scholar 

  47. A. Furdea, S. Halder, D.J. Krusienski, D. Bross, F. Nijboer et al., An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology, 46, 617–625, (2009).

    Google Scholar 

  48. A. Chatterjee, V. Aggarwal, A. Ramos, S. Acharya, N.V. Thakor, A brain-computer interface with vibrotactile biofeedback for haptic information. J Neuroeng Rehabil, 4, 40, (2007).

    Article  PubMed  Google Scholar 

  49. F. Cincotti, L. Kauhanen, F. Aloise, T. Palomäki, N. Caporusso, P. Jylänki, D. Mattia, F. Babiloni, G. Vanacker, M. Nuttin, M.G. Marciani, J.R. Millan, Vibrotactile feedback for brain-computer interface operation. Comput Intell Neurosci, 2007 (2007), Article048937, doi:10.1155/2007/48937.

    Google Scholar 

  50. G.R. Müller-Putz, R. Scherer, C. Neuper, G. Pfurtscheller, Steady-state somatosensory evoked potentials: Suitable brain signals for Brain-computer interfaces? IEEE Trans Neural Syst Rehabil Eng, 14(1), 30–37.

    Google Scholar 

  51. T. Hinterberger and colleagues, Assessment of cognitive function and communication ability in a completely locked-in patient. Neurology, 64(7), 307–1308, (2005).

    Google Scholar 

  52. F. Popescu, S. Fazli, Y. Badower, N. Blankertz, K.R. Müller, Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS ONE, 2(7), e637, (2007).

    Article  PubMed  Google Scholar 

  53. F.J. Mateen, E.J. Sorenson, J.R. Daube Strength, physical activity, and fasciculations in patients with ALS. Amyotroph Lateral Scler, 9, 120–121, (2008).

    Google Scholar 

  54. S. Halder, M. Bensch, J. Mellinger, M. Bogdan, A. Kübler, N. Birbaumer, W. Rosenstiel, Online artifact removal for brain-computer interfaces using support vector machines and blind source separation. Comput Intell Neurosci, Article82069, (2007), doi:10.1155/2007/82069.

    Google Scholar 

  55. J.S. Lou, A. Reeves, T. benice, G. Sexton, Fatigue and depression are associated with poor quality of life in ALS. Neurology, 60(1), 122–123, (2003).

    PubMed  Google Scholar 

  56. C. Ramirez, M.E. Piemonte, D. Callegaro, H.C. Da Silva, Fatigue in amyotrophic lateral sclerosis: Frequency and associated factors. Amyotroph Lateral Scler, 9, 75–80, (2007).

    Google Scholar 

  57. A. Kübler, V.K. Mushahwar, L.R. Hochberg, J.P. Donoghue, BCI Meeting 2005 – Workshop on clinical issues and applications. IEEE Trans Neural Syst Rehabil Eng, 14(2), 131–134, (2006).

    Article  PubMed  Google Scholar 

  58. J.R. Wolpaw, G.E. Loeb, B.Z. Allison, E. Donchin, O. Feix do Nascimento, W.J. Heetderks, F. Nijboer, W.G. Shain, J.N. Turner, BCI Meeting 2005 – Workshop on signals and recording methods. IEEE Trans Neural Syst Rehabil Eng, 14(2), 138–141, (2006).

    Article  PubMed  Google Scholar 

  59. L.H. Phillips, Communicating with the “locked-in” patient – because you can do it, should you? Neurology, 67, 380–381, (2006).

    Article  PubMed  Google Scholar 

  60. A. Saint-Exupéry, Le petit prince (R. Howard, (trans.), 1st edn.), Mariner Books, New York, (1943).

    Google Scholar 

Download references

Acknowledgements

BCI research for and with BCI users is not possible without the joint effort of many dedicated people. People who added to the content of this chapter are: mr. JK, mrs. LK, mrs. KR, mr. WW, mr. RS, mr. HM, professor Andrea Kübler, professor Niels Birbaumer, professor Boris Kotchoubey, Jürgen Mellinger, Tamara Matuz, Sebastian Halder, Ursula Mochty, Boris Kleber, Sonja Kleih, Carolin Ruf, Jeroen Lakerveld, Adrian Furdea, Nicola Neumann, Slavica von Hartlieb, Barbara Wilhelm, Dorothée Lulé, Thilo Hinterberger, Miguel Jordan, Seung Soo Lee, Tilman Gaber, Janna Münzinger, Eva Maria Hammer, Sonja Häcker, Emily Mugler. Also thanks for useful comments on this chapter to Brendan Allison, Stefan Carmien and Ulrich Hoffmann. A special thanks to mr. GR, mr. HC, mr. HPS and Dr. Hannelore Pawelzik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Femke Nijboer .

Editor information

Editors and Affiliations

Additional information

Dedication On the 9th of June 2008, 2 months after completion of the first draft of this chapter, Dr. Ursula Broermann passed away. And in her memory her husband and I decided to dedicate this chapter to her with words from “the little prince”, the book from Saint-Exupéry, that she loved so much [60]: “It is only with the heart that one can see rightly; what is essential is invisible to the eye.”

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nijboer, F., Broermann, U. (2009). Brain–Computer Interfaces for Communication and Control in Locked-in Patients. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds) Brain-Computer Interfaces. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02091-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02091-9_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02090-2

  • Online ISBN: 978-3-642-02091-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics