Skip to main content

Adaptive In-Network Processing for Bandwidth and Energy Constrained Mission-Oriented Multi-hop Wireless Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5516))

Abstract

In-network processing, involving operations such as filtering, compression and fusion, is widely used in sensor networks to reduce the communication overhead. In many tactical and stream-oriented wireless network applications, both link bandwidth and node energy are critically constrained resources and in-network processing itself imposes non-negligible computing cost. In this work, we have developed a unified and distributed closed-loop control framework that computes both a) the optimal level of sensor stream compression performed by a forwarding node, and b) the best set of nodes where the stream processing operators should be deployed. Our framework extends the Network Utility Maximization (NUM) paradigm, where resource sharing among competing applications is modeled as a form of distributed utility maximization. We also show how our model can be adapted to more realistic cases, where in-network compression may be varied only discretely, and where a fusion operation cannot be fractionally distributed across multiple nodes.

This research was sponsored by US Army Research laboratory and the UK Ministry of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the US Army Research Laboratory, the U.S. Government, the UK Ministry of Defense, or the UK Government. The US and UK Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks: shadow prices, proportional fairness and stability. JORS 49, 237–252 (1998)

    Article  MATH  Google Scholar 

  2. Low, S.H., Lapsley, D.E.: Optimization flow control,I: Basic algorithm and convergence. IEEE/ACM ToN 7, 861–874

    Google Scholar 

  3. Freeney, L.M., Nilsson, M.: Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In: Proc. of IEEE INFOCOM (April 2001)

    Google Scholar 

  4. Hou, Y.T., Shi, Y., Sherali, H.D.: Rate allocation in wireless sensor networks with network lifetime requirement. In: Proc. of ACM MobiHoc (May 2004)

    Google Scholar 

  5. Zhang, C., Kurose, J., Liu, Y., Towsley, D., Zink, M.: A distributed algorithm for joint sensing and routing in wireless networks with non-steerable directional antennas. In: Proc. of ICNP 2006 (2006)

    Google Scholar 

  6. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: A tiny aggregation service for ad hoc sensor networks. In: ACM SIGOPS Operating Systems Rev., December 2002, pp. 131–146 (2002)

    Google Scholar 

  7. Bonfils, B., Bonnet, P.: Adaptive and decentralized operator placement for in-network query processing. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 47–62. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Ahmad, Y., Cetintemel, U.: Network-aware query processing for stream-based applications. In: Proc. of VLDB 2004 (2004)

    Google Scholar 

  9. Srivastava, U., Munagala, K., Widom, J.: Operator Placement for in-network stream query processing. In: Proc. PODS 2005 (2005)

    Google Scholar 

  10. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.: Network-aware operator placement for stream-processing systems. In: Proc. of ICDE (2006)

    Google Scholar 

  11. Abrams, Z., Liu, J.: Greedy is good: On service tree placement for in-network stream processing. In: Proc. of ICDCS 2006 (2006)

    Google Scholar 

  12. Ying, L., Liu, Z., Towsley, D., Xia, C.: Distributed Operator Placement and Data Caching in Large-Scale Sensor Networks. In: Proc. INFOCOM 2008, Phoenix, AZ (2008)

    Google Scholar 

  13. Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained devices in delay tolerant networks. In: Proc. of ACM SenSys, pp. 265–278 (2006)

    Google Scholar 

  14. Barr, K.C., Asanović, K.: Energy-aware lossless data compression. ACM TOCS 24(3), 250–291 (2006)

    Article  Google Scholar 

  15. Xia, C., Towsley, D., Zhang, C.: Distributed Resource Management and Admission Control of Stream Processing Systems with Max Utility. In: Proc. of the ICDCS, June 2007, pp. 68–75 (2007)

    Google Scholar 

  16. Bui, L., Srikant, R., Stolyar, A.L.: Optimal Resource Allocation for Multicast Flows in Multihop Wireless Networks. In: Proc. of IEEE CDC (December 2007)

    Google Scholar 

  17. Eswaran, S., Misra, A., Porta, T.L.: Utility-Based Adaptation in Mission-oriented Wireless Sensor Networks. In: Proc. of IEEE SECON (June 2008)

    Google Scholar 

  18. Yu, Y., Krishnamachari, B., Prasanna, V.K.: Data Gathering with Tunable Compression in Sensor Networks. IEEE TPDS 19(2), 276–287 (2008)

    Google Scholar 

  19. Eswaran, S., Misra, A., La Porta, T.F.: Adaptive In-network Processing for Bandwidth and Energy Constrained Mission-oriented Wireless Sensor Networks. Technical Report, Dept. of CSE, Pennsylvania State University (October 2008)

    Google Scholar 

  20. http://www.qualnet.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eswaran, S., Johnson, M., Misra, A., La Porta, T. (2009). Adaptive In-Network Processing for Bandwidth and Energy Constrained Mission-Oriented Multi-hop Wireless Networks . In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds) Distributed Computing in Sensor Systems. DCOSS 2009. Lecture Notes in Computer Science, vol 5516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02085-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02085-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02084-1

  • Online ISBN: 978-3-642-02085-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics