Skip to main content

Efficient Sensor Placement for Surveillance Problems

  • Conference paper
Distributed Computing in Sensor Systems (DCOSS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5516))

Included in the following conference series:

Abstract

We study the problem of covering a two-dimensional spatial region P, cluttered with occluders, by sensors. A sensor placed at a location p covers a point x in P if x lies within sensing radius r from p and x is visible from p, i.e., the segment px does not intersect any occluder. The goal is to compute a placement of the minimum number of sensors that cover P. We propose a landmark-based approach for covering P. Suppose P has ς holes, and it can be covered by h sensors. Given a small parameter ε> 0, let λ: = λ(h,ε) = (h/ε)(1 + ln (1 + ς)). We prove that one can compute a set L of O(λlogλ log(1/ε)) landmarks so that if a set S of sensors covers L, then S covers at least (1 − ε)-fraction of P. It is surprising that so few landmarks are needed, and that the number of landmarks depends only on h, and does not directly depend on the number of vertices in P. We then present efficient randomized algorithms, based on the greedy approach, that, with high probability, compute \(O(\tilde{h}\log \lambda)\) sensor locations to cover L; here \(\tilde{h} \le h\) is the number sensors needed to cover L. We propose various extensions of our approach, including: (i) a weight function over P is given and S should cover at least (1 − ε) of the weighted area of P, and (ii) each point of P is covered by at least t sensors, for a given parameter t ≥ 1.

Work on this paper was supported by NSF under grants CNS-05-40347, CFF-06-35000, and DEB-04-25465, by ARO grants W911NF-04-1-0278 and W911NF-07-1-0376, and by an NIH grant 1P50-GM-08183-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Chen, D.Z., Ganjugunte, S.K., Misiołek, E., Sharir, M.: Stabbing convex polygons with a segment or a polygon. In: Proc. 16th European Symp. Algorithms, pp. 52–63 (2008)

    Google Scholar 

  2. Agarwal, P.K., Hagerup, T., Ray, R., Sharir, M., Smid, M.H.M., Welzl, E.: Translating a planar object to maximize point containment. In: Proc. 10th European Symp. Algorithms, pp. 42–53 (2002)

    Google Scholar 

  3. Ahmed, N., Kanhere, S.S., Jha, S.: The holes problem in wireless sensor networks: a survey. ACM SIGMOBILE Mobile Comput. and Commun. Review 9(2), 4–18 (2005)

    Article  Google Scholar 

  4. Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of polygons. In: Proc. Workshop Alg. Eng. Exp., pp. 120–134 (2007)

    Google Scholar 

  5. Aronov, B., Har-Peled, S.: On approximating the depth and related problems. In: Proc. 16th Annu. ACM-SIAM Symp. on Disc. Alg., pp. 886–894 (2005)

    Google Scholar 

  6. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proc. 8th Canad. Conf. Comput. Geom., pp. 38–44. Carleton University Press (1996)

    Google Scholar 

  7. Bai, X., Kumar, S., Yun, Z., Xuan, D., Lai, T.H.: Deploying wireless sensors to achieve both coverage and connectivity. In: Proc. 7th ACM MobiHoc, pp. 131–142 (2006)

    Google Scholar 

  8. Brönnimann, H., Goodrich, M.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14, 463–479 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chakrabarty, K., Iyengar, S.S., Qi, H., Cho, E.: Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. Computers 51(12), 1448–1453 (2002)

    Article  MathSciNet  Google Scholar 

  10. Cheong, O., Efrat, A., Har-Peled, S.: Finding a guard that sees most and a shop that sells most. Discrete Comput. Geom. 37(4), 545–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dhillon, S., Chakrabarty, K.: Sensor placement for effective coverage and surveillance in distributed sensor networks. In: Proc. IEEE Wireless Communications Network. Conf., pp. 1609–1614 (2003)

    Google Scholar 

  12. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  13. Efrat, A., Fekete, S.P., Gaddehosur, P.R., Mitchell, J.S.B., Polishchuk, V., Suomela, J.: Improved approximation algorithms for relay placement. In: Proc. 16th European Symp. Algorithms, pp. 356–357 (2008)

    Google Scholar 

  14. Efrat, A., Har-Peled, S.: Guarding galleries and terrains. In: 2nd IFIP Internat. Conf. Theo. Comp. Sci., pp. 181–192 (2002)

    Google Scholar 

  15. Efrat, A., Har-Peled, S., Mitchell, J.S.B.: Approximation algorithms for two optimal location problems in sensor networks. In: 2nd Internat. Conf. on Broadband Networks, vol. 1, pp. 714–723 (2005)

    Google Scholar 

  16. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gewali, L., Meng, A., Mitchell, J.S.B., Ntafos, S.: Path planning in 0/1/ ∞ weighted regions with applications. ORSA J. Computing 2, 253–272 (1990)

    Article  MATH  Google Scholar 

  18. González-Bańos, H.H., Latombe, J.C.: A randomized art-gallery algorithm for sensor placement. In: Proc. 16th ACM Symp. Comput. Geom., pp. 232–240 (2000)

    Google Scholar 

  19. Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in Gaussian processes. In: Proc. 22th Int. Conf. Machine Learn., pp. 265–272 (2005)

    Google Scholar 

  20. Halperin, D.: Robust geometric computing in motion. International Journal of Robotics Research 21(3), 219–232 (2002)

    Article  MathSciNet  Google Scholar 

  21. Hefeeda, M., Bagheri, M.: Randomized k-coverage algorithms for dense sensor networks. In: Proc. of 26th IEEE Intl. Conf. on Comp. Commn., pp. 2376–2380 (2007)

    Google Scholar 

  22. Haussler, D., Welzl, E.: ε-nets and simplex range queries. Discrete Comput. Geom. 2, 127–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. In: Proc. ACM Workshop Wireless Sensor Networks Appl. (WSNA), pp. 115–121 (2003)

    Google Scholar 

  24. Iyengar, R., Kar, K., Banerjee, S.: Low-coordination topologies for redundancy in sensor networks. In: Proc. 6th ACM MobiHoc, pp. 332–342 (2005)

    Google Scholar 

  25. Kershner, R.: The number of circles covering a set. American Journal of Mathematics 61(3), 665–671 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  26. Komlós, J., Pach, J., Woeginger, G.: Almost tight bounds for epsilon nets. Discrete Comput. Geom. 7, 163–173 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)

    Book  MATH  Google Scholar 

  28. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13, 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: Human-robot interface design for large swarms of autonomous mobile robots. In: Proc. AAAI Spring Symp. (2006)

    Google Scholar 

  30. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage problems in wireless ad-hoc sensor networks. In: Proc. 20th Annu. Joint Conf. IEEE Comput. Commun. Soc., pp. 1380–1387 (2001)

    Google Scholar 

  31. Meguerdichian, S., Koushanfar, F., Qu, G., Potkonjak, M.: Exposure in wireless ad-hoc sensor networks. In: Proc. 7th Annu. Intl. Conf. on Mobile Computing and Networking, pp. 139–150 (2001)

    Google Scholar 

  32. Rajagopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for set cover and covering integer programs. SIAM J. Comput. 28(2), 525–540 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley-Interscience, San Diego (1995)

    Book  MATH  Google Scholar 

  34. Tian, D., Georganas, N.D.: A coverage-preserving node scheduling scheme for large wireless sensor networks. In: Proc. ACM Workshop Wireless Sens. Nets. Appl (WSNA), pp. 32–41 (2002)

    Google Scholar 

  35. Urrutia, J.: Art Gallery and illumination problems. In: Sack, J., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  36. Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math. 104, 1–16 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Y.C., Hu, C.C., Tseng, Y.C.: Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks. In: Proc. IEEE Wireless Internet Conference (WICON), pp. 114–121 (2005)

    Google Scholar 

  38. Zhao, F., Guibas, L.J.: Wireless Sensor Networks: An Information Processing Approach. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agarwal, P.K., Ezra, E., Ganjugunte, S.K. (2009). Efficient Sensor Placement for Surveillance Problems. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds) Distributed Computing in Sensor Systems. DCOSS 2009. Lecture Notes in Computer Science, vol 5516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02085-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02085-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02084-1

  • Online ISBN: 978-3-642-02085-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics