Skip to main content

Complex Nonlinear Photonic Lattices: From Instabilities to Control

  • Chapter
  • First Online:
Nonlinearities in Periodic Structures and Metamaterials

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 150))

  • 1436 Accesses

Abstract

Nonlinear periodic structures have become an active area of research due to many exciting possibilities of controlling wave propagation, steering and trapping. Periodicity changes the wave bandgap spectrum and therefore strongly affects propagation and localization, leading to the formation of discrete and gap solitons which have already been studied in several branches of science [1–4]. In optics, a periodic modulation of the refractive index can either be prefabricated as in photonic crystals [5] or optically induced in photorefractive materials [6–9]. Until now, several different approaches for the fabrication of photonic crystals exist [10–12]. Although these mechanisms enable a precise material structuring with periodicities adequate for optical waves, they do not allow for flexible changes of structural parameters (e.g., lattice period or modulation depth). In contrast, the optical induction in photorefractive crystals provides highly reconfigurable, wavelength-sensitive nonlinear structures which can be induced at very low power levels. When dealing with optically induced photonic lattices in these photorefractive materials, it is crucially important to consider the anisotropic properties of photorefractive crystals. The light-induced refractive index change strongly depends on orientation as well as polarization of the lattice wave [13, 14]. In particular, its orientation with respect to the c-axis of the crystal determines the symmetry of the induced pattern [15]. The shape of the induced refractive index pattern also changes with increasing lattice strength depending on the saturation of the photorefractive nonlinearity. For instance, an ordinarily polarized light pattern created by several interfering plane waves induces a change of the refractive index while propagating linearly along the crystal. The lattice wave does not ‘feel’ the periodic modulated refractive index during propagation. If the lattice is weak, i.e. it is not affected by the saturation of the photorefractive nonlinearity, the light-induced refractive index follows the light intensity distribution and forms a two-dimensional photonic lattice, being uniform in the direction of propagation. Many exciting features of non-linear light propagation have been investigated in these lattices and have been presented in chapter 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.S. Davydov, J. Theor. Biol. 38, 559 (1973)

    Article  Google Scholar 

  2. W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)

    Article  ADS  Google Scholar 

  3. A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001)

    Article  ADS  Google Scholar 

  4. D.N. Christodoulides and R.I. Joseph, Opt. Lett. 13, 794 (1988)

    Article  ADS  Google Scholar 

  5. Y.S. Kivshar and G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego 2003), p. 540 ff

    Google Scholar 

  6. N.K. Efremidis, S. Sears, D.N. Christodoulides, J.W. Fleischer, and M. Segev, Phys. Rev. E 66, 046602 (2002)

    Article  ADS  Google Scholar 

  7. J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, and D.N. Christodoulides, Phys. Rev. Lett. 90, 023902 (2003)

    Article  ADS  Google Scholar 

  8. D. Neshev, E. Ostrovskaya, Y.S. Kivshar, and W. Krolikowski, Opt. Lett. 28, 710 (2003)

    Article  ADS  Google Scholar 

  9. J.W. Fleischer, M. Segev, N.K. Efremidis, and D.N. Christodoulides, Nature 422, 147 (2003)

    Article  ADS  Google Scholar 

  10. U. Grüning, V. Lehmann, S. Ottow, and K. Busch, Appl. Phys. Lett. 68, 747 (1996)

    Article  ADS  Google Scholar 

  11. T.F. Krauss, R. De La Rue, and S. Brand, Nature 383, 699 (1996)

    Article  ADS  Google Scholar 

  12. J. Serbin, A. Ovsianikov, and B. Chichkov, Opt. Expr. 12, 5221 (2004)

    Article  ADS  Google Scholar 

  13. A.S. Desyatnikov, D.N. Neshev, Y.S. Kivshar, N. Sagemerten, D. Träger, J. Jägers, C. Denz, and Y.V. Kartashov, Opt. Lett. 30, 869 (2005)

    Article  ADS  Google Scholar 

  14. A.S. Desyatnikov, N. Sagemerten, R. Fischer, B. Terhalle, D. Träger, D.N. Neshev, A. Dreischuh, C. Denz, W. Krolikowski, and Y.S. Kivshar, Opt. Expr. 14, 2851 (2006)

    Article  ADS  Google Scholar 

  15. B. Terhalle, A.S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y.S. Kivshar, and C. Denz, Appl. Phys. B 86, 399 (2007)

    Article  ADS  Google Scholar 

  16. J. Petter, J. Schröder, D. Träger, and C. Denz, Opt. Lett. 28, 438 (2003)

    Article  ADS  Google Scholar 

  17. B. Terhalle, D. Träger, L. Tang, J. Imbrock, and C. Denz, Phys. Rev. E 74, 057601 (2006)

    Article  ADS  Google Scholar 

  18. G. Bartal, O. Cohen, H. Buljan, J.W. Fleischer, O. Manela, and M. Segev, Phys. Rev. Lett. 94, 163902 (2005)

    Article  ADS  Google Scholar 

  19. A.A. Zozulya and D.Z. Anderson, Phys. Rev. A 51, 1520 (1995)

    Article  ADS  Google Scholar 

  20. A.A. Zozulya, D.Z. Anderson, A.V. Mamaev, and M. Saffman, Phys. Rev. A 57, 522 (1998)

    Article  ADS  Google Scholar 

  21. D. Träger, R. Fischer, D.N. Neshev, A.A. Sukhorukov, C. Denz, W. Krolikowski, and Y.S. Kivshar, Opt. Expr. 14, 1913 (2006)

    Article  ADS  Google Scholar 

  22. B.B. Baizakov, B.A. Malomed, and M. Salerno, Phys. Rev. A 70, 053613 (2004)

    Article  ADS  Google Scholar 

  23. T. Mayteevarunyoo and B.A. Malomed, Phys. Rev. E 73, 036615 (2006)

    Article  ADS  Google Scholar 

  24. R. Fischer, D. Träger, D.N. Neshev, A.A. Sukhorukov, W. Krolikowski, C. Denz, and Y.S. Kivshar, Phys. Rev. Lett. 96, 023905 (2006)

    Article  ADS  Google Scholar 

  25. A.S. Desyatnikov, E.A. Ostrovskaya, Y.S. Kivshar, and C. Denz, Phys. Rev. Lett. 91, 153902 (2003)

    Article  ADS  Google Scholar 

  26. A. Bezryadina, D.N. Neshev, A. Desyatnikov, J. Young, Z. Chen, and Y.S. Kivshar, Opt. Expr. 14, 8317 (2006)

    Article  ADS  Google Scholar 

  27. C.R. Rosberg, D.N. Neshev, A.A. Sukhorukov, W. Krolikowski, and Y.S. Kivshar, Opt. Lett. 32, 397 (2007)

    Article  ADS  Google Scholar 

  28. C.R. Rosberg, I.L. Garanovich, A.A. Sukhorukov, D.N. Neshev, W. Krolikowski, and Y.S. Kivshar, Opt. Lett. 31, 1498 (2006)

    Article  ADS  Google Scholar 

  29. S. Suntsov, K.G. Makris, D.N. Christodoulides, G.I. Stegemann, A. Hach, R. Morandotti, H. Yang, G. Salamo, and M. Sorel, Phys. Rev. Lett. 96, 063901 (2006)

    Article  ADS  Google Scholar 

  30. E. Smirnov, C.E. Rüter, D. Kip, K. Shandarova, and V. Shandarov, Appl. Phys. B 88, 359 (2007)

    Article  ADS  Google Scholar 

  31. P.J.Y Louis, E.A. Ostrovskaya, and Y.S Kivshar, Phys. Rev. A 71, 023612 (2005)

    Article  ADS  Google Scholar 

  32. P. Rose, B. Terhalle, J. Imbrock, and C. Denz, J. Phys. D: Appl. Phys. 41, 224004 (2008)

    Article  ADS  Google Scholar 

  33. Y. Taketomi, J.E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S.H. Lee, Opt. Lett. 16, 1774 (1991)

    Article  ADS  Google Scholar 

  34. G.A. Rakuljic, V. Leyva, and A. Yariv, Opt. Lett. 17, 1471 (1992)

    Article  ADS  Google Scholar 

  35. F.H. Mok, Opt. Lett. 18, 915 (1993)

    Article  ADS  Google Scholar 

  36. C. Denz, G. Pauliat, G Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991)

    Article  ADS  Google Scholar 

  37. O Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D.N. Christodoulides, Phys. Rev. Lett. 98, 103901 (2007)

    Article  ADS  Google Scholar 

  38. J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, Opt. Lett. 29, 1662 (2004)

    Article  ADS  Google Scholar 

  39. P. Rose, T. Richter, B. Terhalle, J. Imbrock, F. Kaiser, and C. Denz, Appl. Phys. B 89, 521 (2007)

    Article  ADS  Google Scholar 

  40. W. Krolikowski, E.A. Ostrovskaya, C. Weilnau, M. Geisser, G. McCarthy, Y.S. Kivshar, C. Denz, and B. Luther-Davies, Phys. Rev. Lett. 85, 1424 (2000)

    Article  ADS  Google Scholar 

  41. G.I. Stegeman and M. Segev, Science 286, 1518 (1999)

    Article  Google Scholar 

  42. W. Krolikowski, B. Luther-Davies, and C. Denz, IEEE J. Sel. Top. Quantum Electron. 39, 3 (2003)

    Article  ADS  Google Scholar 

  43. C. Weilnau, M. Ahles, J. Petter, D. Träger, J. Schröder, and C. Denz, Ann. Phys. 11, 573 (2002)

    Article  MATH  Google Scholar 

  44. O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, Phys. Rev. Lett. 89, 133901 (2002)

    Article  ADS  Google Scholar 

  45. D. Kip, C. Herden, and M. Wesner, Ferroelectrics 274, 135 (2002)

    Google Scholar 

  46. P. Jander, J. Schröder, C. Denz, M. Petrovic, and M.R. Belic, Opt. Lett. 30, 750 (2005)

    Article  ADS  Google Scholar 

  47. K. Motzek, P. Jander, A. Desyatnikov, M. Belic, C. Denz, and F. Kaiser, Phys. Rev. E 68, 066611 (2003)

    Article  ADS  Google Scholar 

  48. M.R. Belic, P. Jander, A. Strinic, A. Desyatnikov, and C. Denz, Phys. Rev. E 68, 025601 (2003)

    Article  ADS  Google Scholar 

  49. M. Belic, P. Jander, K. Motzek, A. Desyatnikov, D. Jovic, A. Strinic, M. Petrovic, C. Denz, and F. Kaiser, J. Opt. B 6, 190 (2004)

    Article  ADS  Google Scholar 

  50. P. Jander, J. Schröder, T. Richter, K. Motzek, F. Kaiser, M. R. Belic, and C. Denz, Proc. SPIE 6255, 62550A (2006)

    Article  Google Scholar 

  51. M. Haelterman, A.P. Sheppard, and A.W. Snyder, Opt. Commun. 103, 145 (1993)

    Article  ADS  Google Scholar 

  52. S. Koke, D. Träger, P. Jander, M. Chen, D.N. Neshev, W. Krolikowski, Y.S. Kivshar, and C. Denz, Opt. Expr. 15, 6279 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Imbrock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Imbrock, J., Terhalle, B., Rose, P., Jander, P., Koke, S., Denz, C. (2010). Complex Nonlinear Photonic Lattices: From Instabilities to Control. In: Denz, C., Flach, S., Kivshar, Y. (eds) Nonlinearities in Periodic Structures and Metamaterials. Springer Series in Optical Sciences, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02066-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02066-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02065-0

  • Online ISBN: 978-3-642-02066-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics