Skip to main content

Optical Metamaterials: Invisibility in Visible and Nonlinearities in Reverse

  • Chapter
  • First Online:
Book cover Nonlinearities in Periodic Structures and Metamaterials

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 150))

Abstract

Recent experimental demonstrations of optical metamaterials opened up an entirely new branch of modern optics that can be described as “refractive index engineering” [1–20]. The refractive index of a material is the factor by which an electromagnetic wave is slowed down, compared with a vacuum, when it propagates inside the material. The material properties of conventional materials are largely controlled by the properties of their constituent components, viz., atoms and molecules. Their refractive indices can be modified to some degree by altering material chemical composition, using thermal or electrical tuning, or through nonlinear optical effects. Nevertheless, a majority of existing materials possesses positive, and typically greater than one, index of refraction. In contrast, meta-materials provide almost unlimited opportunities for designing the refractive index through a careful engineering of their constituent components, or meta-atoms. Several examples of engineered optical structures, including magnetic metamaterial and negative index metamaterials (NIMs), are shown in Fig. 13.1. Moreover, metamaterial properties can be tuned [21,22] and even controlled on a level of a single meta-atom [23]. Basic properties of optical metamaterials will be reviewed in Section 13.1. Additional design flexibility provided by metamaterials (discussed in Section 13.2) gives rise to new linear and nonlinear optical properties, functionalities, and applications unattainable with conventional materials. In this chapter, we discuss two examples of refractive index engineering in metamaterials that results in truly fascinating phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.M. Shalaev, Nature Photonics 1, 41 (2007)

    ADS  Google Scholar 

  2. C.M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47 (2007)

    Google Scholar 

  3. T.A. Klar, A.V. Kildishev, V.P. Drachev, and V.M. Shalaev, IEEE J. of Selected Topics in Quantum Electronics 12, 1106 (2006)

    Google Scholar 

  4. V.G. Veselago, L. Braginsky, V. Shklover, and C. Hafner, J. of Computational and Theoretical Nanoscience 3, 189 (2006)

    Google Scholar 

  5. V.G. Veselago and E.E. Narimanov, Nature Materials 5, 759 (2006)

    ADS  Google Scholar 

  6. G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis, and S. Linden, Opt. Lett. 30, 3198 (2005)

    ADS  Google Scholar 

  7. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, and C.M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005)

    ADS  Google Scholar 

  8. S. Zhang, W. Fan, B.K. Minhas, A. Frauenglass, K.J. Malloy, and S.R.J. Brueck, Phys. Rev. Lett. 94, 037402 (2005)

    ADS  Google Scholar 

  9. V.M. Shalaev, W. Cai, U.K. Chettiar, H. Yuan, A.K. Sarychev, V.P. Drachev, and A.V. Kildishev, Opt. Lett. 30, 3356 (2005)

    ADS  Google Scholar 

  10. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005)

    ADS  Google Scholar 

  11. U.K. Chettiar, A.V. Kildishev, T.A. Klar, V.M. Shalaev, Opt. Express 14, 7872 (2006)

    ADS  Google Scholar 

  12. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006)

    ADS  Google Scholar 

  13. V.P. Drachev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, A.V. Kildishev, G. Klimeck, and V.M. Shalaev, Laser Phys. Lett. 3, 49 (2006)

    ADS  Google Scholar 

  14. A.V. Kildishev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, and V.M. Shalaev, J. Opt. Soc. Am. B 23, 423 (2006)

    ADS  Google Scholar 

  15. A.K. Sarychev, G. Shvets, and V.M. Shalaev, Phys. Rev. E 73, 036609 (2006)

    ADS  Google Scholar 

  16. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, and S.R.J. Brueck, Opt. Express 14, 6778 (2006)

    ADS  Google Scholar 

  17. G. Dolling, M. Wegener, C.M. Soukoulis, and S. Linden, Opt. Lett. 32, 53 (2007)

    ADS  Google Scholar 

  18. G. Dolling, M. Wegener, and S. Linden, Opt. Lett. 32, 551 (2007)

    ADS  Google Scholar 

  19. U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V.P. Drachev, and V.M. Shalaev, V. M., Opt. Lett. 32, 1671 (2007)

    ADS  Google Scholar 

  20. W. Cai, U.K. Chettiar, H.-K. Yuan, V.C. de Silva, A.V. Kildishev, V.P. Drachev, and V.M. Shalaev, Opt. Express 15, 3333 (2007)

    ADS  Google Scholar 

  21. I.V. Shadrivov, S.K. Morrison, and Y.S. Kivshar, Opt. Express 14, 9344 (2006)

    ADS  Google Scholar 

  22. D.H. Werner, D.-H. Kwon, I.-C. Khoo, A.V. Kildishev, and V.M. Shalaev, Opt. Express 15, 3342 (2007)

    ADS  Google Scholar 

  23. A. Degiron, J.J. Mock, and D.R. Smith, Opt. Express 15, 1115 (2007)

    ADS  Google Scholar 

  24. J.B. Pendry, D. Schurig, and D.R. Smith, Science 312, 1780 (2006)

    MathSciNet  ADS  MATH  Google Scholar 

  25. U. Leonhardt, Science 312, 1777 (2006)

    MathSciNet  ADS  MATH  Google Scholar 

  26. U. Leonhardt and T.G. Philbin, New J. Phys. 8, 247 (2006)

    ADS  Google Scholar 

  27. . D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, and D.R. Smith, Science Express Manuscript Number 113362 (2006)

    Google Scholar 

  28. B. Wood and J.B. Pendry, J. Phys. 19, 076208 (2007)

    Google Scholar 

  29. S.A. Cummer and D. Schurig, New J. Phys. 9, 45 (2007)

    ADS  Google Scholar 

  30. W. Cai, U.K. Chettiar, A.V. Kildishev, and V.M. Shalaev, Nature Photonics 1, 224 (2007)

    ADS  Google Scholar 

  31. W. Cai, U.K. Chettiar, A.V. Kildishev, G.W. Milton, and V.M. Shalaev, Appl. Phys. Lett. 91, 111105 (2007)

    ADS  Google Scholar 

  32. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    ADS  Google Scholar 

  33. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    ADS  Google Scholar 

  34. R.A. Shelby, D.R. Smith, and S. Schultz, Science 292, 77 (2001)

    ADS  Google Scholar 

  35. A.A. Houck, J.B. Brock, and I.L. Chuang, Phys. Rev. Lett. 90, 137401 (2003)

    ADS  Google Scholar 

  36. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C.M. Soukoulis, Science 306, 1351 (2004)

    ADS  Google Scholar 

  37. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, and X. Zhang, Science 303, 1494 (2004)

    ADS  Google Scholar 

  38. T.F. Gundogdu, I. Tsiapa, A. Kostopoulos, G. Konstantinidis, N. Katsarakis, R.S. Penciu, M. Kafesaki, E.N. Economou, T. Koschny, and C.M. Soukoulis, Appl. Phys. Lett. 89, 084103 (2006)

    ADS  Google Scholar 

  39. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    ADS  Google Scholar 

  40. R. Merlin, Appl. Phys. Lett. 84, 1290 (2004)

    ADS  Google Scholar 

  41. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005)

    ADS  Google Scholar 

  42. V.A. Podolskiy and E.E. Narimanov, Opt. Lett. 30, 75 (2005)

    ADS  Google Scholar 

  43. A.A. Zharov, N.A. Zharova, I.V. Shadrivov, and Y.S. Kivshar, Appl. Phys. Lett. 87, 091104 (2005)

    ADS  Google Scholar 

  44. R.J. Blaikie, D.O.S. Melville, and M.M. Alkalsi, Microelectronic Engineering 83, 723 (2006)

    Google Scholar 

  45. Z. Jacob, L.V. Alekseyev, and E. Narimanov, Opt. Express 14, 8247 (2006)

    ADS  Google Scholar 

  46. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, Science 313, 1595 (2006)

    Google Scholar 

  47. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, Opt. Express 15, 6947 (2007)

    ADS  Google Scholar 

  48. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007)

    ADS  Google Scholar 

  49. I.I. Smolyaninov, Y.-J. Hung, and C.C. Davis, Science 315, 1699 (2007)

    ADS  Google Scholar 

  50. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)

    ADS  Google Scholar 

  51. A.A. Zharov, I.V. Shadrivov, and Y.S. Kivshar, Phys. Rev. Lett. 91, 037401 (2003)

    ADS  Google Scholar 

  52. V.M. Agranovich, Y.R. Shen, R.H. Baughman, and A.A. Zakhidov, Phys. Rev. B 69, 165112 (2004)

    ADS  Google Scholar 

  53. N. Mattiucci, G. D’Aguanno, M.J. Bloemer, and M. Scalora, Phys. Rev. E 72, 066612 (2005)

    ADS  Google Scholar 

  54. G. D’Aguanno, N. Mattiucci, M.J. Bloemer, and M. Scalora, Phys. Rev. E 73, 036603 (2006)

    ADS  Google Scholar 

  55. V. Shadrivov, A.A Zharov, and Y.S. Kivshar, J. Opt. Soc. Am. B 23, 529 (2006)

    ADS  Google Scholar 

  56. A.K. Popov, V.V. Slabko, and V.M. Shalaev, Laser Phys. Lett. 3, 293 (2006)

    ADS  Google Scholar 

  57. A.K. Popov and V.M. Shalaev, Appl. Phys. B 84, 131 (2006)

    ADS  Google Scholar 

  58. A.K. Popov and V.M. Shalaev, Opt. Lett. 31, 2169 (2006)

    ADS  Google Scholar 

  59. M.W. Klein, C. Enkrich, M. Wegener, and S. Linden, Science 313, 502 (2006)

    ADS  Google Scholar 

  60. M. Scalora, G. D’Aguanno, M.J. Bloemer, M. Centini, D. de Ceglia, N. Mattiucci, and Y.S. Kivshar, Opt. Express 14, 4746 (2006)

    ADS  Google Scholar 

  61. M.W. Klein, M. Wegener, N. Feth, and S. Linden, Opt. Express 15, 5238 (2007)

    ADS  Google Scholar 

  62. D. de Ceglia, A. D’Orazio, M. de Sario, V. Petruzzelli, F. Prudenzano, M. Centini, M.G. Cappeddu, M.J. Bloemer, and M. Scalora, Opt. Lett. 32, 265 (2007)

    ADS  Google Scholar 

  63. M.V. Gorkunov, I.V. Shadrivov, and Y.S. Kivshar, Appl. Phys. Lett. 88, 071912 (2006)

    ADS  Google Scholar 

  64. A.B. Kozyrev, H. Kim, and D.W. van der Weide, Appl. Phys. Lett. 88, 264101 (2006)

    ADS  Google Scholar 

  65. A.K. Popov, S.A. Myslivets, T.F. George, and V.M. Shalaev, Opt. Lett. 32, 3044 (2007)

    ADS  Google Scholar 

  66. M.W. Feise, I.V. Shadrivov, and Y.S. Kivshar, Appl. Phys. Lett. 85, 1451 (2004)

    ADS  Google Scholar 

  67. M.W. Feise, I.V. Shadrivov, and Y.S. Kivshar, Phys. Rev. E 71, 037602 (2005)

    ADS  Google Scholar 

  68. R.S. Hegde and H. Winful, Microwave and Opt. Technol. Lett. 46, 528 (2005)

    Google Scholar 

  69. N.M. Litchinitser, I.R. Gabitov, A.I. Maimistov, and V.M. Shalaev, Opt. Lett. 32, 151 (2007)

    ADS  Google Scholar 

  70. N.M. Litchinitser, I.R. Gabitov, and A.I. Maimistov, Phys. Rev. Lett. 99, 113902 (2007)

    ADS  Google Scholar 

  71. G. D’Aguanno, N. Mattiucci, M. Scalora, and M.J. Bloemer, Phys. Rev. Lett. 93, 213902 (2004)

    ADS  Google Scholar 

  72. I.V. Shadrivov, N. Zharova, A. Zharov, and Y.S. Kivshar, Opt. Express 13, 1291 (2005)

    ADS  Google Scholar 

  73. I.V. Shadrivov and Y.S. Kivshar, J. Opt. A 7, S68 (2005)

    ADS  Google Scholar 

  74. A.D. Boardman, P. Egan, L. Velasco, and N. King, J. Opt. A 7, S57 (2005)

    ADS  Google Scholar 

  75. A.D. Boardman, L. Velasco, N. King, and Y. Rapoport, J. Opt. Soc. Am. B 22, 1443 (2005)

    MathSciNet  ADS  Google Scholar 

  76. I.R. Gabitov, R.A. Indik, N.M. Litchinitser, A.I. Maimistov, V.M. Shalaev, and J.E. Soneson, J. Opt. Soc. Am. B 23, 535 (2006)

    ADS  Google Scholar 

  77. A.I. Maimistov, I.R. Gabitov, and E.V. Kazantseva, Optics and Spectroscopy 102, 90 (2007)

    ADS  Google Scholar 

  78. R.S. Hegde and H. Winful, Opt. Lett. 30, 1852 (2005)

    ADS  Google Scholar 

  79. M. Marklund, P.K. Shukla, and L. Stenflo, Phys. Rev. E 73, 0376011 (2006)

    Google Scholar 

  80. B.T. Schwartz and R. Piestun, J. Opt. Soc. Am. B 20, 2448 (2003)

    ADS  Google Scholar 

  81. M. Rahm, D. Schurig, D.A. Roberts, S.A. Cummer, D.R. Smith, and J.B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008)

    ADS  Google Scholar 

  82. H. Chen and C.T. Chan, Appl. Phys. Lett. 90, 241105 (2007)

    ADS  Google Scholar 

  83. A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005)

    ADS  Google Scholar 

  84. A. Alù and N. Engheta, Opt. Express 15, 3318 (2007)

    ADS  Google Scholar 

  85. M.G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. E 75, 036603 (2007)

    ADS  Google Scholar 

  86. A. Alù and N. Engheta, Opt. Express 15, 7578 (2007)

    ADS  Google Scholar 

  87. M. Kerker, J. Opt. Soc. Am. 65, 375 (1975)

    ADS  Google Scholar 

  88. N.A. Nicorovici, R.C. McPhedran, and G.W. Milton, Phys. Rev. B 49, 8479 (1994)

    ADS  Google Scholar 

  89. G.W. Milton, and N.A. Nicorovici, Proc. R. Soc. Lond. A 462, 3027 (2006)

    MathSciNet  ADS  MATH  Google Scholar 

  90. N.A. Nicorovici, G.W. Milton, R.C. McPhedran, and L.C. Botten, Opt. Express 15, 6314 (2007)

    ADS  Google Scholar 

  91. A.J. Ward, and J.B. Pendry, J. Modern Opt. 43, 773 (1996)

    MathSciNet  ADS  MATH  Google Scholar 

  92. E.J. Post, Formal Structure of Electromagnetics, Wiley, New York (1962)

    MATH  Google Scholar 

  93. D. Schurig, J.B. Pendry, and D.R. Smith, Opt. Express 14, 9794 (2006)

    ADS  Google Scholar 

  94. S.A. Cummer, B.-I. Popa, D. Schurig, D.R. Smith, and J.B. Pendry, Phys. Rev. E 74, 036621 (2006)

    ADS  Google Scholar 

  95. . A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, arXiv:math/0611185v3 (2007)

    Google Scholar 

  96. H. Lamb, Proc. Lond. Math. Soc. 1, 473 (1904)

    MATH  Google Scholar 

  97. A. Schuster, An Introduction to the Theory of Optics, Edward Arnold, London (1904)

    MATH  Google Scholar 

  98. M. von Laue, Ann. Phys. 18, 523 (1905)

    Google Scholar 

  99. H.C. Pocklington, Nature 71, 607 (1905)

    ADS  MATH  Google Scholar 

  100. D.V. Sivukhin, Opt. Spektrosk. 3, 308 (1957)

    Google Scholar 

  101. V.M. Agranovich and V.L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, Springer, Berlin (1984)

    Google Scholar 

  102. A. Alù and N. Engheta, IEEE Trans. on Antennas and Propagation 51, 2558 (2003)

    ADS  Google Scholar 

  103. A. Alù and N. Engheta, IEEE Trans. on Microwave Theory and Techniques 52, 199 (2004)

    ADS  Google Scholar 

  104. N. Engheta and R.W. Ziolkowski, IEEE Trans. Microwave Theory and Techniques 53, 1535 (2005)

    ADS  Google Scholar 

  105. R.W. Ziolkowski, J. Opt. Soc. Am. B 23, 451 (2006)

    ADS  Google Scholar 

  106. P.A. Franken, A.E. Hill, C.W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961)

    ADS  Google Scholar 

  107. M.I. Stockman, Phys. Rev. Lett. 98, 177404 (2007)

    ADS  Google Scholar 

  108. R.W. Boyd, Nonlinear optics, second edition, Elsevier (2003)

    Google Scholar 

  109. S.M. Jensen, IEEE J. Quantum Electron. 18, 1580 (1982)

    ADS  Google Scholar 

  110. H.M. Gibbs, Optical Bistability, Academic Press, Orlando (1985)

    Google Scholar 

  111. H.G. Winful, J.H. Marburger, and E. Garmire, Appl. Phys. Lett. 35, 379 (1979)

    ADS  Google Scholar 

  112. M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, Dover, New York (1972)

    MATH  Google Scholar 

  113. C.M. de Sterke and J.E. Sipe, in Progress in Optics, edited by E. Wolf, Vol. 33, pp. 203–260, Elsevier, Amsterdam (1994)

    Google Scholar 

  114. W. Chen and D.L. Mills, Phys. Rev. Lett. 58, 160 (1987)

    ADS  Google Scholar 

  115. B.J. Eggleton, R.E. Slusher, C.M. de Sterke, P.A. Krug, and J.E. Sipe, Phys. Rev. Lett. 76, 1627 (1996)

    ADS  Google Scholar 

  116. M. Scalora, M. Syrchin, N. Akozbek, E.Y. Poliakov, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, and A.M. Zheltikov, Phys. Rev. Lett. 95, 013902 (2005); Erratum, Phys. Rev. Lett. 95, 239902 (2005)

    ADS  Google Scholar 

  117. M. Scalora, G. D’Aguanno, N. Mattiucci, N. Akozbek, M.J. Bloemer, M. Centini, C. Sibilia, and M. Bertolotti, Phys. Rev. E 72, 066601 (2005)

    ADS  Google Scholar 

  118. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A.J. Ikushima, T. Tokizaki, A. Nakamura, J. Opt. Soc. Am. B 11, 1236 (1994)

    ADS  Google Scholar 

  119. S.G. Rautian, JETP 85, 451 (1997)

    ADS  Google Scholar 

  120. V.P. Drachev, A.K. Buin, H. Nakotte, and V.M. Shalaev, Nano Lett. 4, 1535 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia M. Litchinitser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Litchinitser, N.M., Shalaev, V.M. (2010). Optical Metamaterials: Invisibility in Visible and Nonlinearities in Reverse. In: Denz, C., Flach, S., Kivshar, Y. (eds) Nonlinearities in Periodic Structures and Metamaterials. Springer Series in Optical Sciences, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02066-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02066-7_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02065-0

  • Online ISBN: 978-3-642-02066-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics