Skip to main content

Transporting Cold Atoms in Optical Lattices with Ratchets: Mechanisms and Symmetries

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 150))

Abstract

Thermal fluctuations alone cannot create a steady directed transport in an unbiased system. However, if a system is out of equilibrium, the Second Law of Thermodynamics no longer applies, and then there are no thermodynamical constraints on the appearance of a steady transport [1, 2]. A directed current can be generated out of a fluctuating (time-dependent) external field with zero mean. The corresponding ratchet effect [3–9] has been proposed as a physical mechanism of a microbiologicalmotility more then a decade ago [4,5]. Later on the ratchet idea has found diverse applications in different areas [6–9], from a molecular nanoscale-machine [10] up to quantum systems and quantum devices [11–17]. When the deviation from an equilibrium regime is small (the case of weak external fields) one may use the linear response theory in order to estimate the answer of the system [18–20]. However, due to the linearization of the response, the current value will be strictly zero since the driving field has zero bias. Therefore, one has to take into account nonlinear corrections and then derive the corresponding nonlinear response functional [20, 21], which may become a very complicated task, if the nonadiabatic regime is to be considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. von Smoluchowski, Phys. Zeitschrift XIII, 1069 (1912)

    Google Scholar 

  2. R.P. Feynmann, R.B. Leighton, and M. Sands, The Feyman Lectures on Physics, 2nd edn., Addison Wesley, Reading, MA (1963), vol. 1, chap. 46

    Google Scholar 

  3. M.O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993)

    Article  ADS  Google Scholar 

  4. P. Hänggi and R. Bartussek, Lect. Notes. Phys. 476, 294 (1996)

    Article  ADS  Google Scholar 

  5. F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269 (1997)

    Article  ADS  Google Scholar 

  6. P. Reimann and P. Hänggi, Appl. Phys. A 75, 169 (2002)

    Article  ADS  Google Scholar 

  7. P. Reimann, Phys. Rep. 361, 57 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R.D. Astumian and P. Hänggi, Physics Today 55, 33 (2002)

    Article  Google Scholar 

  9. P. Hänggi, F. Marchesoni, and F. Nori, Ann. Phys. 14, 51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Norden, Y. Zolotaryuk, P.L. Christiansen, and A.V. Zolotaryuk, Phys. Rev. E 65, 011110 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  11. P. Reimann, M. Grifoni, and P. Hänggi, Phys. Rev. Lett. 79, 10 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. I. Goychuk, M. Grifoni, and P. Hänggi, Phys. Rev. Lett. 81, 649 (1998); ibid 81, 2837 (1998) (erratum)

    Article  ADS  Google Scholar 

  13. I. Goychuk and Hänggi, Europhys. Lett. 43, 503 (1998)

    Article  ADS  Google Scholar 

  14. J. Lehmann, S. Kohler, P. Hänggi, and A. Nitzan, Phys. Rev. Lett. 88, 228305 (2002)

    Article  ADS  Google Scholar 

  15. M. Grifoni, M.S. Ferreira, J. Peguiron, and J.B. Majer, Phys. Rev. Lett. 89, 146801 (2002)

    Article  ADS  Google Scholar 

  16. H. Linke, T.E. Humphrey, A. Löfgren, A.O. Sushkov, R. Newbury, R.P. Taylor, and P. Omling, Science 286, 2314 (1999)

    Article  Google Scholar 

  17. J.B. Majer, J. Peguiron, M. Grifoni, M. Trusveld, and J.E. Mooij, Phys. Rev. Lett. 90, 056802 (2003)

    Article  ADS  Google Scholar 

  18. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Kubo, N. Toda, and N. Hashitsume, Statistical Physics II, Springer, Berlin (1985)

    Book  Google Scholar 

  20. P. Hänggi and H. Thomas, Phys. Rep. 88, 207 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  21. N.G. van Kampen, Phys. Norv. 5, 279 (1971)

    Google Scholar 

  22. S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Phys. Rev. Lett. 84, 2358 (2000)

    Article  ADS  Google Scholar 

  23. S. Denisov, S. Flach, A.A. Ovchinnikov, O. Yevtushenko, and Y. Zolotaryuk, Phys. Rev. E 66, 041104 (2002)

    Article  ADS  Google Scholar 

  24. P. Jung, J.G. Kissner, and P. Hänggi, Phys. Rev. Lett. 76, 3436 (1996)

    Article  ADS  Google Scholar 

  25. O. Yevtushenko, S. Flach, Y. Zolotaryuk, and A.A. Ovchinnikov, Europhys. Lett. 54, 141 (2001)

    Article  ADS  Google Scholar 

  26. S. Denisov and S. Flach, Phys. Rev. E 64, 056236 (2001)

    Article  ADS  Google Scholar 

  27. L. Guidoni and P. Verkerk, J. Opt. B 1, R23 (1999)

    Article  ADS  Google Scholar 

  28. O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)

    Article  ADS  Google Scholar 

  29. M. Schiavoni, L. Sanchez-Palencia, F. Renzoni, and G. Grynberg, Phys. Rev. Lett. 90, 094101 (2003)

    Article  ADS  Google Scholar 

  30. P.H. Jones, M. Goonasekera, and F. Renzoni, Phys. Rev. Lett. 93, 073904 (2004)

    Article  ADS  Google Scholar 

  31. R. Gommers, S. Bergamini, and F. Renzoni, Phys. Rev. Lett. 95, 073003 (2005)

    Article  ADS  Google Scholar 

  32. R. Gommers, S. Denisov, and F. Renzoni, Phys. Rev. Lett. 96, 240604 (2006)

    Article  ADS  Google Scholar 

  33. G. Ritt, C. Geckeler, T. Salger, G. Cennini, and M. Weitz, Phys. Rev. A 74, 063622 (2006)

    Article  ADS  Google Scholar 

  34. R.J. Gordon and S.A. Rice, Ann. Rev. Phys. Chem. 48, 601 (1997)

    Article  ADS  Google Scholar 

  35. S. Denisov, J. Klafter, and M. Urbakh, Phys. Rev. E 66, 046203 (2002)

    Article  ADS  Google Scholar 

  36. S. Savel'ev, F. Marchesoni, P. Hänggi, and F. Nori, Europhys. Lett. 67, 179 (2004)

    Article  ADS  Google Scholar 

  37. S. Savel'ev, F. Marchesoni, P. Hänggi, and F. Nori, Phys. Rev. E 70, 066109 (2004)

    Article  ADS  Google Scholar 

  38. E. Neumann and A. Pikovsky, Eur. Phys. J. B 26, 219 (1995)

    Article  ADS  Google Scholar 

  39. S. Flach and S. Denisov, Acta Phys. Pol. B 35, 1437 (2004)

    ADS  Google Scholar 

  40. G.M. Zaslavsky, Physics of chaos in Hamiltonian systems, Imperial College Press (1998)

    MATH  Google Scholar 

  41. H. Schanz, M.-F. Otto, R. Ketzmerick, and T. Dittrich, Phys. Rev. Lett. 87, 070601 (2001)

    Article  ADS  Google Scholar 

  42. H. Schanz, T. Dittrich, and R. Ketzmerick, Phys. Rev. E 71, 026228 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  43. S. Denisov, S. Flach, and P. Hänggi, Europhys. Lett. 74, 588 (2006)

    Article  ADS  Google Scholar 

  44. S. Denisov, L. Morales-Molina, S. Flach, and P. Hänggi, Phys. Rev. A 75, 063424 (2007)

    Article  ADS  Google Scholar 

  45. S. Denisov, L. Morales-Molina, and S. Flach, Europhys. Lett. 79, 10007 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Gong, D. Poletti, and P. Hänggi, Phys. Rev. A 75, 033602 (2007)

    Article  ADS  Google Scholar 

  47. M. Grifoni and P. Hänggi, Phys. Rep. 304, 279 (1998)

    Article  Google Scholar 

  48. K. Husimi, Proc. Phys. Math. Soc. Japan 22, 264 (1940)

    MATH  Google Scholar 

  49. K. Takahashi and N. Saito, Phys. Rev. Lett. 55, 645 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  50. F. Haake, Quantum signature of chaos, Springer-Verlag, London (1991)

    Google Scholar 

  51. I. Goychuk and Hänggi, J. Phys. Chem. B 105, 6642 (2001)

    Article  Google Scholar 

  52. S. Flach, Y. Zolotaryuk, A.E. Miroshnichenko, and M.V. Fistul, Phys. Rev. Lett. 88, 184101 (2002)

    Article  ADS  Google Scholar 

  53. A.V. Ustinov, C. Coqui, A. Kemp, Y. Zolotaryuk, and M. Salerno, Phys. Rev. Lett. 93, 087001 (2004)

    Article  ADS  Google Scholar 

  54. S. Flach, and A.A. Ovchinnikov, Physica A 292, 268 (2001)

    Article  ADS  Google Scholar 

  55. E. Arimondo, Ann. Phys. 3, 425 (1968)

    Google Scholar 

  56. M. Greiner, I. Bloch, O.Mandel, T.W. Hänsch, and T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001)

    Article  ADS  Google Scholar 

  57. L. Santos, M.A. Baranov, J.I. Cirac, H.-U. Everts, H. Fehrmann, and M. Lewenstein, Phys. Rev. Lett. 93, 030601 (2004)

    Article  ADS  Google Scholar 

  58. A.V. Gorbach, S. Denisov, and S. Flach, Opt. Lett. 31, 1702 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Denisov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Denisov, S., Flach, S., Hänggi, P. (2010). Transporting Cold Atoms in Optical Lattices with Ratchets: Mechanisms and Symmetries. In: Denz, C., Flach, S., Kivshar, Y. (eds) Nonlinearities in Periodic Structures and Metamaterials. Springer Series in Optical Sciences, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02066-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02066-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02065-0

  • Online ISBN: 978-3-642-02066-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics