Skip to main content

Evaluation of Plasma Membrane Calcium/Calmodulin-Dependent ATPase Isoform 4 as a Potential Target for Fertility Control

  • Chapter
  • First Online:
Fertility Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 198))

Abstract

The array of contraceptives currently available is clearly inadequate and does not meet consumer demands since it is estimated that up to a quarter of all pregnancies worldwide are unintended. There is, therefore, an overwhelming global need to develop new effective, safe, ideally non-hormonal contraceptives for both male and female use. The contraceptive field, unlike other areas such as cancer, has a dearth of new targets. We have addressed this issue and propose that isoform 4 of the plasma membrane calcium ATPase is a potentially exciting novel target for fertility control. The plasma membrane calcium ATPase is a ubiquitously expressed calcium pump whose primary function in the majority of cells is to extrude calcium to the extracellular milieu. Two isoforms of this gene family, PMCA1 and PMCA4, are expressed in spermatozoa, with PMCA4 being the predominant isoform. Although this gene is ubiquitously expressed, its function is highly tissue-specific. Genetic deletion of PMCA4, in PMCA4 knockout mice, led to 100% infertility specifically in the male mutant mice due to a selective defect in sperm motility. It is important to note that the gene deletion did not affect normal mating characteristics in these mice. This phenotype was mimicked in wild-type sperm treated with the non-specific PMCA inhibitor 5-(and 6-) carboxyeosin diacetate succinimidyl ester; a proof-of-principle that inhibition of PMCA4 has potential importance in the control of fertility. This review outlines the potential for PMCA4 to be a novel target for fertility control by acting to inhibit sperm motility. It will outline the characteristics that make this target drugable and will describe methodologies to identify and validate novel inhibitors of this target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken RJ, Baker MA, Doncel GF, Matzuk MM, Mauck CK, Harper MJ (2008) As the world grows: contraception in the 21st century. J Clin Invest 118:1330–1343

    Article  PubMed  CAS  Google Scholar 

  • Anawalt BD, Bebb RA, Bremner WJ, Matsumoto AM (1999) A lower dosage levonorgestrel and testosterone combination effectively suppresses spermatogenesis and circulating gonadotropin levels with fewer metabolic effects than higher dosage combinations. J Androl 20:407–414

    PubMed  CAS  Google Scholar 

  • Baggaley EM, Elliott AC, Bruce JI (2008) Oxidant-induced inhibition of the plasma membrane Ca2+-ATPase in pancreatic acinar cells: role of the mitochondria. Am J Physiol Cell Physiol 295:C1247–C1260

    Article  PubMed  CAS  Google Scholar 

  • Brandt P, Neve RL, Kammesheidt A, Rhoads RE, Vanaman TC (1992) Analysis of the tissue-specific distribution of mRNAs encoding the plasma membrane calcium-pumping ATPases and characterization of an alternately spliced form of PMCA4 at the cDNA and genomic levels. J Biol Chem 267:4376–4385

    PubMed  CAS  Google Scholar 

  • Brini M, Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E (2007) Plasma-membrane calcium pumps and hereditary deafness. Biochem Soc Trans 35:913–918

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Superti-Furga G (2003) Rediscovering the sweet spot in drug discovery. Drug Discov Today 8:1067–1077

    Article  PubMed  Google Scholar 

  • Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153

    PubMed  CAS  Google Scholar 

  • Carafoli E, Stauffer T (1994) The plasma membrane calcium pump: functional domains, regulation of the activity, and tissue specificity of isoform expression. J Neurobiol 25:312–324

    Article  PubMed  CAS  Google Scholar 

  • Cartwright EJ, Oceandy D, Neyses L (2007) Plasma membrane calcium ATPase and its relationship to nitric oxide signaling in the heart. Ann N Y Acad Sci 1099:247–253

    Article  PubMed  CAS  Google Scholar 

  • Cartwright EJ, Oceandy D, Neyses L (2009) Physiological implications of the interaction between the plasma membrane calcium pump and nNOS. Pflugers Arch 457(3):665–671

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary J, Walia M, Matharu J, Escher E, Grover AK (2001) Caloxin: a novel plasma membrane Ca2+ pump inhibitor. Am J Physiol Cell Physiol 280:C1027–C1030

    PubMed  CAS  Google Scholar 

  • Darszon A, Nishigaki T, Wood C, Trevino CL, Felix R, Beltran C (2005) Calcium channels and Ca2+ fluctuations in sperm physiology. Int Rev Cytol 243:79–172

    Article  PubMed  CAS  Google Scholar 

  • de Meis L, Vianna AL (1979) Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 48:275–292

    Article  PubMed  Google Scholar 

  • Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E (2008) The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys 476:65–74

    Article  PubMed  Google Scholar 

  • Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21:5066–5078

    PubMed  CAS  Google Scholar 

  • Garcia ML, Strehler EE (1999) Plasma membrane calcium ATPases as critical regulators of calcium homeostasis during neuronal cell function. Front Biosci 4:D869–D882

    Article  PubMed  CAS  Google Scholar 

  • Gatto C, Milanick MA (1993) Inhibition of the red blood cell calcium pump by eosin and other fluorescein analogues. Am J Physiol 264:C1577–C1586

    PubMed  CAS  Google Scholar 

  • Global Health Council (2002) Promises to keep: the toll of unintended pregnancies on women’s lives in the developing world. Global Health Council, Washington DC

    Google Scholar 

  • Gu YQ, Wang XH, Xu D, Peng L, Cheng LF, Huang MK, Huang ZJ, Zhang GY (2003) A multicenter contraceptive efficacy study of injectable testosterone undecanoate in healthy Chinese men. J Clin Endocrinol Metab 88:562–568

    Article  PubMed  CAS  Google Scholar 

  • Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  PubMed  CAS  Google Scholar 

  • Hammes A, Oberdorf-Maass S, Rother T, Nething K, Gollnick F, Linz KW, Meyer R, Hu K, Han H, Gaudron P, Ertl G, Hoffmann S, Ganten U, Vetter R, Schuh K, Benkwitz C, Zimmer HG, Neyses L (1998) Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circ Res 83:877–888

    Article  PubMed  CAS  Google Scholar 

  • Handelsman DJ, Conway AJ, Howe CJ, Turner L, Mackey MA (1996) Establishing the minimum effective dose and additive effects of depot progestin in suppression of human spermatogenesis by a testosterone depot. J Clin Endocrinol Metab 81:4113–4121

    Article  PubMed  CAS  Google Scholar 

  • Hay CJ, Brady BM, Zitzmann M, Osmanagaoglu K, Pollanen P, Apter D, Wu FC, Anderson RA, Nieschlag E, Devroey P, Huhtaniemi I, Kersemaekers WM (2005) A multicenter phase IIb study of a novel combination of intramuscular androgen (testosterone decanoate) and oral progestogen (etonogestrel) for male hormonal contraception. J Clin Endocrinol Metab 90:2042–2049

    Article  PubMed  CAS  Google Scholar 

  • Heinemann K, Saad F, Wiesemes M, Heinemann LA (2005) Expectations toward a novel male fertility control method and potential user types: results of a multinational survey. J Androl 26:155–162

    PubMed  Google Scholar 

  • Jin J, Jin N, Zheng H, Ro S, Tafolla D, Sanders KM, Yan W (2007) Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility in the mouse. Biol Reprod 77:37–44

    Article  PubMed  CAS  Google Scholar 

  • Kamischke A, Venherm S, Ploger D, von Eckardstein S, Nieschlag E (2001) Intramuscular testosterone undecanoate and norethisterone enanthate in a clinical trial for male contraception. J Clin Endocrinol Metab 86:303–309

    Article  PubMed  CAS  Google Scholar 

  • Kozel PJ, Friedman RA, Erway LC, Yamoah EN, Liu LH, Riddle T, Duffy JJ, Doetschman T, Miller ML, Cardell EL, Shull GE (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696

    Article  PubMed  CAS  Google Scholar 

  • Krebs J, Vasak M, Scarpa A, Carafoli E (1987) Conformational differences between the E1 and E2 states of the calcium adenosinetriphosphatase of the erythrocyte plasma membrane as revealed by circular dichroism and fluorescence spectroscopy. Biochemistry 26:3921–3926

    Article  PubMed  CAS  Google Scholar 

  • Marian MJ, Li H, Borchman D, Paterson CA (2005) Plasma membrane Ca2+-ATPase expression in the human lens. Exp Eye Res 81:57–64

    Article  PubMed  CAS  Google Scholar 

  • Nass SJ, Strauss JF 3rd (2004) Strategies to facilitate the development of new contraceptives. Nat Rev Drug Discov 3:885–890

    Article  PubMed  CAS  Google Scholar 

  • Oceandy D, Cartwright EJ, Emerson M, Prehar S, Baudoin FM, Zi M, Alatwi N, Schuh K, Williams JC, Armesilla AL, Neyses L (2007) Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation 115:483–492

    Article  PubMed  CAS  Google Scholar 

  • Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O'Connor KT, Neumann JC, Andringa A, Miller DA, Prasad V, Doetschman T, Paul RJ, Shull GE (2004) Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279:33742–33750

    Article  PubMed  CAS  Google Scholar 

  • Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Moller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Olson S, Wang MG, Carafoli E, Strehler EE, McBride OW (1991) Localization of two genes encoding plasma membrane Ca2(+)-transporting ATPases to human chromosomes 1q25-32 and 12q21-23. Genomics 9:629–641

    Article  PubMed  CAS  Google Scholar 

  • Osborn KD, Zaidi A, Mandal A, Urbauer RJ, Johnson CK (2004) Single-molecule dynamics of the calcium-dependent activation of plasma-membrane Ca2+-ATPase by calmodulin. Biophys J 87:1892–1899

    Article  PubMed  CAS  Google Scholar 

  • Prasad V, Okunade G, Liu L, Paul RJ, Shull GE (2007) Distinct phenotypes among plasma membrane Ca2+-ATPase knockout mice. Ann N Y Acad Sci 1099:276–286

    Article  PubMed  CAS  Google Scholar 

  • Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL (2003) Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc Natl Acad Sci USA 100:14869–14874

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt TA, Filoteo AG, Penniston JT, Horst RL (2000) Ca(2+)-ATPase protein expression in mammary tissue. Am J Physiol Cell Physiol 279:C1595–C1602

    PubMed  CAS  Google Scholar 

  • Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609

    Article  PubMed  CAS  Google Scholar 

  • Scarborough GA (2003) Why we must move on from the E1E2 model for the reaction cycle of the P-type ATPases. J Bioenerg Biomembr 35:193–201

    Article  PubMed  CAS  Google Scholar 

  • Schuh K, Quaschning T, Knauer S, Hu K, Kocak S, Roethlein N, Neyses L (2003) Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump. J Biol Chem 278:41246–41252

    Article  PubMed  CAS  Google Scholar 

  • Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC, Armesilla AL, Emerson M, Oceandy D, Knobeloch KP, Neyses L (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    Article  PubMed  CAS  Google Scholar 

  • Schultz JM, Yang Y, Caride AJ, Filoteo AG, Penheiter AR, Lagziel A, Morell RJ, Mohiddin SA, Fananapazir L, Madeo AC, Penniston JT, Griffith AJ (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med 352:1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Sohoel H, Liljefors T, Ley SV, Oliver SF, Antonello A, Smith MD, Olsen CE, Isaacs JT, Christensen SB (2005) Total synthesis of two novel subpicomolar sarco/endoplasmatic reticulum Ca2+-ATPase inhibitors designed by an analysis of the binding site of thapsigargin. J Med Chem 48:7005–7011

    Article  PubMed  CAS  Google Scholar 

  • Stahl WL, Eakin TJ, Anderson WR, Owens JW Jr, Breininger JF, Filuk PE (1992) Localization of mRNA coding for plasma membrane Ca-ATPase isoforms in rat brain by in situ hybridization. Ann N Y Acad Sci 671:433–435

    Article  PubMed  CAS  Google Scholar 

  • Stauffer TP, Hilfiker H, Carafoli E, Strehler EE (1993) Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes. J Biol Chem 268:25993–26003

    PubMed  CAS  Google Scholar 

  • Stauffer TP, Guerini D, Carafoli E (1995) Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J Biol Chem 270:12184–12190

    Article  PubMed  CAS  Google Scholar 

  • Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394

    Article  PubMed  CAS  Google Scholar 

  • Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    PubMed  CAS  Google Scholar 

  • Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A (2007) Plasma membrane Ca2+ ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci 1099:226–236

    Article  PubMed  CAS  Google Scholar 

  • Szewczyk MM, Pande J, Grover AK (2008) Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology. Pflugers Arch 456:255–266

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Kitamura K (1999) A point mutation in a plasma membrane Ca(2+)-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem Biophys Res Commun 261:773–778

    Article  PubMed  CAS  Google Scholar 

  • Talarico EF Jr, Kennedy BG, Marfurt CF, Loeffler KU, Mangini NJ (2005) Expression and immunolocalization of plasma membrane calcium ATPase isoforms in human corneal epithelium. Mol Vis 11:169–178

    PubMed  CAS  Google Scholar 

  • Wang MG, Yi H, Hilfiker H, Carafoli E, Strehler EE, McBride OW (1994) Localization of two genes encoding plasma membrane Ca2+ ATPases isoforms 2 (ATP2B2) and 3 (ATP2B3) to human chromosomes 3p26–>p25 and Xq28, respectively. Cytogenet Cell Genet 67:41–45

    Article  PubMed  CAS  Google Scholar 

  • Wennemuth G, Babcock DF, Hille B (2003) Calcium clearance mechanisms of mouse sperm. J Gen Physiol 122:115–128

    Article  PubMed  CAS  Google Scholar 

  • Wu FC, Balasubramanian R, Mulders TM, Coelingh-Bennink HJ (1999) Oral progestogen combined with testosterone as a potential male contraceptive: additive effects between desogestrel and testosterone enanthate in suppression of spermatogenesis, pituitary-testicular axis, and lipid metabolism. J Clin Endocrinol Metab 84:112–122

    Article  PubMed  CAS  Google Scholar 

  • Zacharias DA, Kappen C (1999) Developmental expression of the four plasma membrane calcium ATPase (Pmca) genes in the mouse. Biochim Biophys Acta 1428:397–405

    Article  PubMed  CAS  Google Scholar 

  • Zambrowicz BP, Sands AT (2003) Knockouts model the 100 best-selling drugs – will they model the next 100? Nat Rev Drug Discov 2:38–51

    Article  PubMed  CAS  Google Scholar 

  • Zambrowicz BP, Sands AT (2004) Modeling drug action in the mouse with knockouts and RNA interference. Drug Discov Today: Targets 3:198–207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank and acknowledge Florence Baudoin, Tamer Mohamed, Adam Pickard and Libby Oakden for their invaluable contributions to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Cartwright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cartwright, E.J., Neyses, L. (2010). Evaluation of Plasma Membrane Calcium/Calmodulin-Dependent ATPase Isoform 4 as a Potential Target for Fertility Control. In: Habenicht, UF., Aitken, R. (eds) Fertility Control. Handbook of Experimental Pharmacology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02062-9_6

Download citation

Publish with us

Policies and ethics