Skip to main content

New Insights into Ovarian Function

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 198))

Abstract

Infertility adversely affects many couples worldwide. Conversely, the exponential increase in world population threatens our planet and its resources. Therefore, a greater understanding of the fundamental cellular and molecular events that control the size of the primordial follicle pool and follicular development is of utmost importance to develop improved in vitro fertilization as well as to design novel approaches to regulate fertility. In this review we attempt to highlight some new advances in basic research of the mammalian ovary that have occurred in recent years focusing primarily on mouse models that have contributed to our understanding of ovarian follicle formation, development, and ovulation. We hope that these new insights into ovarian function will trigger more research and translation to clinically relevant problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfieri JA, Martin AD, Takeda J, Kondoh G, Myles DG, Primakoff P (2003) Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J Cell Sci 116:2149–2155

    Article  PubMed  CAS  Google Scholar 

  • Baker TG (1963) A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci 158:417–433

    Article  PubMed  CAS  Google Scholar 

  • Block E (1952) Quantitative morphological investigations of the follicular system in women; variations at different ages. Acta Anat (Basel) 14:108–123

    Article  CAS  Google Scholar 

  • Boerboom D, Paquet M, Hsieh M, Liu J, Jamin SP, Behringer RR, Sirois J, Taketo MM, Richards JS (2005) Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Res 65:9206–9215

    Article  PubMed  CAS  Google Scholar 

  • Burton KA, McKnight GS (2007) PKA, germ cells, and fertility. Physiology 22:40–46

    Article  PubMed  CAS  Google Scholar 

  • Buteau J, Shlien A, Foisy S, Accili D (2007) Metabolic diapause in pancreatic b-cells expressing a gain-of-function mutant of the forkhead protein Foxo1. J Biol Chem 282:287–293

    Article  PubMed  CAS  Google Scholar 

  • Carabatsos MJ, Elvin JA, Matzuk MM, Albertini DF (1998) Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol 204:373–384

    Article  PubMed  CAS  Google Scholar 

  • Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA (2003) Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301:215–218

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Gao F, Guillou F, Taketo MM, Huff V, Behringer RR (2008) Wt1 negatively regulates beta-catenin signaling during testis development. Development 135:1875–1885

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Jefferson WN, Newbold RR, Padilla-Banks E, Estradiol PME (2007) Progesterone and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo. Endocrinology 148(8):3580–3590

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Rajkovic A (2006) Characterization of NOBOX DNA binding specificity and its regulation of Gdf9 and Pou5f1 promoters. J Biol Chem 281:35747–35756

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Yuan D, Rajkovic A (2008) Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression. Biol Reprod 79(6):1176–1182

    Article  PubMed  CAS  Google Scholar 

  • Cocolakis E, Lemay S, Ali S, Lebrun JJ (2001) The p38 MAPK pathway is required for cell growth inhibition of human breast cancer cells in response to activin. J Biol Chem 276:18430–18436

    Article  PubMed  CAS  Google Scholar 

  • Coerver KA, Woodruff TK, Finegold MJ, Mather J, Bradley A, Matzuk MM (1996) Activin signaling through activin receptor type II causes the cachexia-like symptoms in inhibin-deficient mice. Mol Endocrinol 10:534–543

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Hsieh M, Park J-Y, Su Y-Q (2005) Role of the EGF network in ovarian follicles. Mol Endocrinol 20:715–723

    Article  PubMed  CAS  Google Scholar 

  • Crisponi L, Deiana M, Loi A, Chiappe F, Uda M, Amati P, Bisceglia L, Zelante L, Nagaraja R, Porcu S, Ristaldi MS, Marzella R, Rocchi M, Nicolino M, Lienhardt-Roussie A, Nivelon A, Verloes A, Schlessinger D, Gasparini P, Bonneau D, Cao A, Pilia G (2001) The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27:159–166

    Article  PubMed  CAS  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  • Di Pasquale E, Beck-Peccoz P, Persani L (2004) Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet 75:106–111

    Article  PubMed  Google Scholar 

  • Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, Cavallo L, Einaudi S, Radetti G, Russo G, Sacco M, Wasniewska M, Cole T, Beck-Peccoz P, Nelson LM, Persani L (2006) Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab 91:1976–1979

    Article  PubMed  CAS  Google Scholar 

  • DiLuigi A, Weitzman VN, Pace MC, Siano LJ, Maier D, Mehlmann LM (2008) Meiotic arrest in human oocytes is maintained by a Gs signaling pathway. Biol Reprod 78:667–672

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    Article  PubMed  CAS  Google Scholar 

  • Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM (1998) The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 12:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Duggavathi R, Volle DH, Mataki C, Antal MC, Messaddeq N, Auwerx J, Murphy BD, Schoonjans K (2008) Liver receptor homolog 1 is essential for ovulation. Genes Dev 22:1871–1876

    Article  PubMed  CAS  Google Scholar 

  • Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM (1999a) Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol 13:1035–1048

    Article  PubMed  CAS  Google Scholar 

  • Elvin JA, Yan C, Wang P, Nishimori K, Matzuk MM (1999b) Molecular characterization of the follicle defects in the growth differentiation factor-9-deficient ovary. Mol Endocrinol 13:1018–1034

    Article  PubMed  CAS  Google Scholar 

  • Engle E (1927) Polyovular follicles and polynuclear ova in the mouse. Anat Rec 35:341–343

    Article  Google Scholar 

  • Eppig JJ (1991) Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 13:569–574

    Article  PubMed  CAS  Google Scholar 

  • Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK (2005) Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod 73:351–357

    Article  PubMed  CAS  Google Scholar 

  • Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF (1992) Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod 7:1342–1346

    PubMed  CAS  Google Scholar 

  • Fan HY, Liu Z, Cahill N, Richards JS (2008a) Targeted disruption of Pten in ovarian granulosa cells enhances ovulation and extends the life span of luteal cells. Mol Endocrinol 22:2128–2140

    Article  PubMed  CAS  Google Scholar 

  • Fan HY, Shimada M, Liu Z, Cahill N, Noma N, Wu Y, Gossen J, Richards JS (2008b) Selective expression of KrasG12D in granulosa cells of the mouse ovary causes defects in follicular development and ovulation. Development 135:2127–2137

    Article  PubMed  CAS  Google Scholar 

  • Fan HY, Liu Z, Paquet M, Wang J, Lydon JP, DeMayo F, Richards JS (2009) Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res 69(16):6463–6472

    Article  PubMed  CAS  Google Scholar 

  • Fiedler SD, Carletti MZ, Hong X, Christenson LK (2008) Hormonal regulation of MicroRNA expression in Periovulatory mouse mural granulosa cells. Biol Reprod 79:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Gallardo TD, John GB, Shirley L, Contreras CM, Akbay EA, Haynie JM, Ward SE, Shidler MJ, Castrillon DH (2007) Genomewide discovery and classification of candidate ovarian fertility genes in the mouse. Genetics 177:179–194

    Article  PubMed  CAS  Google Scholar 

  • Gershon E, Hourvitz A, Reikhav S, Maman E, Dekel N (2007) Low expression of COX2, reduced cumulus expansion and impaired ovulation in SULT1E1-deficient mice. FASEB J 21:1893–1901

    Article  PubMed  CAS  Google Scholar 

  • Gittens JEI, Kidder GM (2005) Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries. J Cell Sci 118:5071–5078

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS (2000) FSH stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk): evidence for A-kinase independent signaling in granulosa cells. Mol Endocrinol 14:1283–1300

    Article  PubMed  CAS  Google Scholar 

  • Greenbaum MP, Yan W, Wu MH, Lin YN, Agno JE, Sharma M, Braun RE, Rajkovic A, Matzuk MM (2006) TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci USA 103:4982–4987

    Article  PubMed  CAS  Google Scholar 

  • Greenfeld CR, Pepling ME, Babus JK, Furth PA, Flaws JA (2007) BAX regulates follicular endowment in mice. Reproduction 133:865–876

    Article  PubMed  CAS  Google Scholar 

  • Hinckley M, Vaccari S, Horner K, Chen R, Conti M (2005) The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes. Dev Biol 287:249–261

    Article  PubMed  CAS  Google Scholar 

  • Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK (2008) Dicer1 Is essential for female fertility and normal development of the female reproductive system. Endocrinology 149:6207–6213

    Article  PubMed  CAS  Google Scholar 

  • Hosaka T, Biggs WH 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 101:2975–2980

    Article  PubMed  CAS  Google Scholar 

  • Hsieh M, Lee D, Panigone S, Horner K, Chen R, Theologis A, Lee DC, Threadgill DW, Conti M (2007) Luteinizing hormone-dependent activation of the epidermal growth factor network is essential for ovulation. Mol Cell Biol 27:1914–1924

    Article  PubMed  CAS  Google Scholar 

  • Iguchi T, Takasugi N (1986) Polyovular follicles in the ovary of immature mice exposed prenatally to diethylstilbestrol. Anat Embryol (Berl) 175:53–55

    Article  CAS  Google Scholar 

  • Iguchi T, Takasugi N, Bern HA, Mills KT (1986) Frequent occurrence of polyovular follicles in ovaries of mice exposed neonatally to diethylstilbestrol. Teratology 34:29–35

    Article  PubMed  CAS  Google Scholar 

  • Iguchi T, Fukazawa Y, Uesugi Y, Takasugi N (1990) Polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol in vivo and in vitro. Biol Reprod 43:478–484

    Article  PubMed  CAS  Google Scholar 

  • Jagiello G, Ducayen M (1973) Meiosis of ova from polyovular (C58-J) and polycystic (C57 L-J) strains of mice. Fertil Steril 24:10–14

    PubMed  CAS  Google Scholar 

  • Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR (2002) Requirement of Bmpr1a for Mullerian duct regression during male sexual development. Nat Genet 7:7

    Google Scholar 

  • Jorgez CJ, Klysik M, Jamin SP, Behringer RR, Matzuk MM (2004) Granulosa cell-specific inactivation of follistatin causes female fertility defects. Mol Endocrinol 18:953–967

    Article  PubMed  CAS  Google Scholar 

  • Juengel JL, McNatty KP (2005) The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update 11:143–160

    PubMed  CAS  Google Scholar 

  • Juengel JL, Hudson NL, Heath DA, Smith P, Reader KL, Lawrence SB, O’Connell AR, Laitinen MP, Cranfield M, Groome NP, Ritvos O, McNatty KP (2002) Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol Reprod 67:1777–1789

    Article  PubMed  CAS  Google Scholar 

  • Kalfa N, Fellous M, Boizet-Bonhoure B, Patte C, Duvillard P, Pienkowski C, Jaubert F, Ecochard A, Sultan C (2008) Aberrant expression of ovary determining gene FOXL2 in the testis and juvenile granulosa cell tumor in children. Sex Dev 2:142–151

    Article  CAS  Google Scholar 

  • Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M, Lomeli H, Nagy A, McLaughlin KJ, Scholer HR, Tomilin A (2004) Oct4 is required for primordial germ cell survival. EMBO Rep 5:1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Sato M, Li Q, Lydon JP, DeMayo FJ, Bagchi IC, Bagchi MK (2008) Peroxisome proliferator-activated receptor gamma is a target of progesterone receptor regulation in preovulatory follicles and controls ovulation in mice. Mol Cell Biol 28:1770–1782

    Article  PubMed  CAS  Google Scholar 

  • Kipp JL, Kilen SM, Bristol-Gould S, Woodruff TK, Mayo KE (2007) Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary. Endocrinology 148:1968–1976

    Article  PubMed  CAS  Google Scholar 

  • Kumar TR, Wang Y, Lu N, Matzuk MM (1997) Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 15:201–204

    Article  PubMed  CAS  Google Scholar 

  • Lague MN, Paquet M, Fan HY, Kaartinen MJ, Chu S, Jamin SP, Behringer RR, Fuller PJ, Mitchell A, Dore M, Huneault LM, Richards JS, Boerboom D (2008) Synergistic effects of Pten loss and WNT/CTNNB1 signaling pathway activation in ovarian granulosa cell tumor development and progression. Carcinogenesis 29:2062–2072

    Article  PubMed  CAS  Google Scholar 

  • Lan ZJ, Gu P, Xu X, Jackson KJ, DeMayo FJ, O’Malley BW, Cooney AJ (2003) GCNF-dependent repression of BMP-15 and GDF-9 mediates gamete regulation of female fertility. EMBO J 22:4070–4081

    Article  PubMed  CAS  Google Scholar 

  • Lan ZJ, Xu X, Cooney AJ (2004) Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biol Reprod 71:1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Moore DD (2008) Liver receptor homolog-1, an emerging metabolic modulator. Front Biosci 13:5950–5958

    Article  PubMed  CAS  Google Scholar 

  • Lewandoski M, Wassarman KM, Martin GR (1997) Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr Biol 7:148–151

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Graff JM, O’Connor AE, Loveland KL, Matzuk MM (2007a) SMAD3 regulates gonadal tumorigenesis. Mol Endocrinol 21:2472–2486

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Kumar R, Underwood K, O’Connor AE, Loveland KL, Seehra JS, Matzuk MM (2007b) Prevention of cachexia-like syndrome development and reduction of tumor progression in inhibin-deficient mice following administration of a chimeric activin receptor type II-murine Fc protein. Mol Hum Reprod 13:675–683

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Pangas SA, Jorgez CJ, Graff JM, Weinstein M, Matzuk MM (2008) Redundant roles of SMAD2 and SMAD3 in ovarian granulosa cells in vivo. MolCell Biol 28(23):7001–7011

    CAS  Google Scholar 

  • Liang L-F, Soyal S, Dean J (1997) FIGa, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development 124:4939–4947

    PubMed  CAS  Google Scholar 

  • Liu L, Rajareddy S, Reddy P, Du C, Jagarlamudi K, Shen Y, Gunnarsson D, Selstam G, Boman K, Liu K (2007) Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development 134:199–209

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Rudd MD, Hernandez-Gonzalez I, Gonzalez-Robayna I, Zeleznik AJ, Richards JS (2009) FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Mol Endocrinol 23:649–661

    Google Scholar 

  • Liu Z, Shimada M, Richards JS (2008b) The involvement of the Toll-like receptor family in ovulation. J Ass Reprod Genet 25:223–228

    Article  Google Scholar 

  • Liu Z, deMatos DG, Fan HY, Shimada M, Palmer S, Richards JS (2009) IL6: a potent regulator of the mouse cumulus cells-oocyte complex expansion process. Endocrinology 150(7):3360–3368

    Article  PubMed  CAS  Google Scholar 

  • Looyenga BD, Hammer GD (2007) Genetic removal of smad3 from inhibin-null mice attenuates tumor progression by uncoupling extracellular mitogenic signals from the cell cycle machinery. Mol Endocrinol 21:2440–2457

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490

    Article  PubMed  CAS  Google Scholar 

  • Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, Capel B (2008) Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet 17:2949–2955

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Han S, Kitamura T, Accili D (2006) Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 116:2464–2472

    PubMed  CAS  Google Scholar 

  • Matzuk M, Finegold M, Su J, Hsueh A, Bradley A (1992) a-Inhibin is a tumor-suppressor gene with gonadal specificity in mice. Nature 360:313–319

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A (1994) Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci USA 91:8817–8821

    Article  PubMed  CAS  Google Scholar 

  • Matzuk MM, Kumar TR, Bradley A (1995) Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374:356–360

    Article  PubMed  CAS  Google Scholar 

  • McGrath SA, Esquela AF, Lee S-J (1995) Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 9:131–136

    Article  PubMed  CAS  Google Scholar 

  • McMahon HE, Hashimoto O, Mellon PL, Shimasaki S (2008) Oocyte-specific overexpression of mouse bone morphogenetic protein-15 leads to accelerated folliculogenesis and an early onset of acyclicity in transgenic mice. Endocrinology 149:2807–2815

    Article  PubMed  CAS  Google Scholar 

  • McMullen ML, Cho BN, Yates CJ, Mayo KE (2001) Gonadal pathologies in transgenic mice expressing the rat inhibin alpha-subunit. Endocrinology 142:5005–5014

    Article  PubMed  CAS  Google Scholar 

  • McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, Western A, Meerasahib MF, Mottershead DG, Groome NP, Ritvos O, Laitinen MP (2005) Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction 129:473–480

    Article  PubMed  CAS  Google Scholar 

  • McNatty KP, Hudson NL, Whiting L, Reader KL, Lun S, Western A, Heath DA, Smith P, Moore LG, Juengel JL (2007) The effects of immunizing sheep with different BMP15 or GDF9 peptide sequences on ovarian follicular activity and ovulation rate. Biol Reprod 76:552–560

    Article  PubMed  CAS  Google Scholar 

  • McPherron AC, Lee S-J (1993) GDF-3 and GDF-9: Two new members of the transforming growth factor-b superfamily containing a novel pattern of cysteines. J Biol Chem 268:3444–3449

    PubMed  CAS  Google Scholar 

  • Mehlmann LM, Saeki Y, Tanaka S, Brennan TJ, Evsikov AV, Pendola FL, Knowles BB, Eppig JJ, Jaffe LA (2004) The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 306:1947–1950

    Article  PubMed  CAS  Google Scholar 

  • Mishima T, Takizawa T, Luo S-S, Ishibashi O, Kawahigashi K, Mizuguchi Y, Ishikawa T, Mori M, Kanda T, Goto T, Takizawa T (2008) MicroRNA cloning analis reveals sex differences in microRNa expression profiles between adult mouse testis and ovary. Reproduction 136:811

    Article  PubMed  CAS  Google Scholar 

  • Molyneaux KA, Schaible K, Wylie C (2003) GP130, the shared receptor for the LIF/I:6 cytokine family in the mouse, is not required for early germ cell differentiation but is required cell-autonomously in oocytes for ovulation. Development 130:4287–4294

    Article  PubMed  CAS  Google Scholar 

  • Moumne L, Batista F, Benayoun BA, Nallathambi J, Fellous M, Sundaresan P, Veitia RA (2008) The mutations and potential targets of the forkhead transcription factor FOXL2. Mol Cell Endocrinol 282:2–11

    Article  PubMed  CAS  Google Scholar 

  • Mullen EM, Gu P, Cooney AJ (2007) Nuclear receptors in regulation of mouse ES cell pluripotency and differentiation. PPAR Res 61563

    Google Scholar 

  • Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo F, Matzuk MM (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 22:2336–2352

    Article  PubMed  CAS  Google Scholar 

  • Nautiyal J, Steel JS, Roseell MM, Nikolopoulou E, Lee K, DeMayo FJ, White R, Richards JS, Parker MG (2010) The nuclear receptor cofactor receptor-interaction protein 140 is a positive regulator of amphiregulin expression and cumulus cell-oocyte complex expansion in the mouse ovary. Endocrinology 151:2923–2932

    Article  PubMed  CAS  Google Scholar 

  • Nichol D, Christian M, Steel JH, White R, Parke MG (2006) RIP140 expression is stimulated by estrogen-related receptor alpha during adipogenesis. J Biol Chem 281:32140–32147

    Article  PubMed  CAS  Google Scholar 

  • Norris RP, Freudzon M, Mehlmann LM, Cowan AE, Simon AM, Paul DL, Lampe PD, Jaffe LA (2008) Luteinizing hormone causes MAP kinase-dependent phosphorylation and closure of connexin 43 gap junctions in mouse ovarian follicles: one of two paths to meiotic resumption. Development 135:3229–3238

    Article  PubMed  CAS  Google Scholar 

  • Otsuka F, Yao Z, Lee T, Yamamoto S, Erickson GF, Shimasaki S (2000) Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem 275:39523–39528

    Article  PubMed  CAS  Google Scholar 

  • Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S, Han J (2008) Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118:1944–1954

    Article  PubMed  CAS  Google Scholar 

  • Ottolenghi C, Pelosi E, Tran J, Colombino M, Douglass E, Nedorezov T, Cao A, Forabosco A, Schlessinger D (2007) Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16:2795–2804

    Article  PubMed  CAS  Google Scholar 

  • Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial homeostasis. Cell 128:309–323

    Article  PubMed  CAS  Google Scholar 

  • Pangas SA, Matzuk MM (2005) The art and artifact of GDF9 activity: cumulus expansion and the cumulus expansion-enabling factor. Biol Reprod 73:582–585

    Article  PubMed  CAS  Google Scholar 

  • Pangas S, Matzuk MM (2008) The TGF-B family in the reproductive tract. In: Derynck R, Miyazono K (eds) The TGF-beta family. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 861–888

    Google Scholar 

  • Pangas SA, Rajkovic A (2006) Transcriptional regulation of early oogenesis: in search of masters. Hum Reprod Update 12:65–76

    Article  PubMed  CAS  Google Scholar 

  • Pangas SA, Saudye H, Shea LD, Woodruff TK (2003) Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Eng 9:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Pangas SA, Choi Y, Ballow DJ, Zhao Y, Westphal H, Matzuk MM, Rajkovic A (2006a) Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc Natl Acad Sci USA 103:8090–8095

    Article  PubMed  CAS  Google Scholar 

  • Pangas SA, Li X, Robertson EJ, Matzuk MM (2006b) Premature luteinization and cumulus cell defects in ovarian-specific Smad4 knockout mice. Mol Endocrinol 20:1406–1422

    Article  PubMed  CAS  Google Scholar 

  • Pangas SA, Jorgez CJ, Tran M, Agno J, Li X, Brown CW, Kumar TR, Matzuk MM (2007) Intraovarian activins are required for female fertility. Mol Endocrinol 21:2458–2471

    Article  PubMed  CAS  Google Scholar 

  • Pangas SA, Li X, Umans L, Zwijsen A, Huylebroeck D, Gutierrez C, Wang D, Martin JF, Jamin SP, Behringer RR, Robertson EJ, Matzuk MM (2008) Conditional deletion of Smad1 and Smad5 in somatic cells of male and female gonads leads to metastatic tumor development in mice. Mol Cell Biol 28:248–257

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Maizels ET, Feiger ZJ, Alam H, Peters CA, Woodruff TK, Unterman TG, Lee EJ, Jameson JL, Hunzicker-Dunn M (2005) Induction of cyclin D2 in rat granulosa cells requires FSH-dependent relief from FOXO1 repression coupled with positive signals from Smad. J Biol Chem 280:9135–9148

    Article  PubMed  CAS  Google Scholar 

  • Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, Guerra L, Schedl A, Camerino G (2006) R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309

    Article  PubMed  CAS  Google Scholar 

  • Pelusi C, Ikeda Y, Zubair M, Parker KL (2008) Impaired follicle development and infertility in female mice lacking steroidogenic factor 1 in ovarian granulosa cells. Biol Reprod 79(6):1074–1083

    Article  PubMed  CAS  Google Scholar 

  • Perez GI, Robles R, Knudson CM, Flaws JA, Korsmeyer SJ, Tilly JL (1999) Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nat Genet 21:200–203

    Article  PubMed  CAS  Google Scholar 

  • Perez GI, Jurisicova A, Wise L, Lipina T, Kanisek M, Bechard A, Takai Y, Hunt P, Roder J, Grynpas M, Tilly JL (2007) Absence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice. Proc Natl Acad Sci USA 104:5229–5234

    Article  PubMed  CAS  Google Scholar 

  • Pisarska M, Bae J, Klein C, Hseuh AJ (2004) Forkhead L2 is expressed in the ovary and represses the promoter activity of the steroidogenic acute regulatory gene. Endocrinology 145:3424–3433

    Article  PubMed  CAS  Google Scholar 

  • Racki WJ, Richter JD (2006) CPEB controls oocyte growth and follicle development in the mouse. Development 133:4527–4537

    Article  PubMed  CAS  Google Scholar 

  • Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305:1157–1159

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, Shen Y, Du C, Tang W, Hamalainen T, Peng SL, Lan ZJ, Cooney AJ, Huhtaniemi I, Liu K (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319:611–613

    Article  PubMed  CAS  Google Scholar 

  • Richards JS, Liu Z, Shimada M (2008) Immune-like mechanisms in ovulation. Trends Endocrinol Metab 19:191–196

    Article  PubMed  CAS  Google Scholar 

  • Rudd MD, Gonzalez-Robayna I, Hernandez-Gonzalez I, Weigel NL, Bingman W III, Richards JS (2007) Constitutively active FOXO1 and a DNA binding domain mutant exhibit distinct co-regulatory functions to enhance progesterone receptor A activity. J Mol Endocrinol 38:673–690

    Article  PubMed  CAS  Google Scholar 

  • Saxena D, Escamilla-Hernandez R, Little-Ihrig L, Zeleznik AJ (2007) Liver receptor homolog-1 and steroidogenic factor-1 have similar actions on rat granulosa cell steroidogenesis. Endocrinology 148:725–734

    Google Scholar 

  • Shimada M, Gonzalez-Robayna I, Hernandez-Gonzalez I, Richards JS (2006) Paracrine and autocrine regulation of EGF-like factors in cumulus oocyte complexes and granulosa cells: key role for prostaglandin synthase 2 (Ptgs2) and progesterone receptor (Pgr). Mol Endocrinol 20:348–364

    Article  CAS  Google Scholar 

  • Shimada M, Yanai Y, Okazaki T, Yamashita Y, Sriraman V, Wilson MC, Richards JS (2007) Synaptosomal associated protein 25 gene expression is hormonally regulated during ovulation and is involved in cytokine/chemokine exocytosis from granulosa cells. Mol Endocrinol 21:2487–2502

    Article  PubMed  CAS  Google Scholar 

  • Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T, Richards JS (2008) Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 135:2001–2011

    Article  PubMed  CAS  Google Scholar 

  • Simpson JL (2008) Genetic and phenotypic heterogeneity in ovarian failure: overview of selected candidate genes. Ann N Y Acad Sci 1135:146–154

    Article  PubMed  Google Scholar 

  • Soyal SM, Amleh A, Dean J (2000) FIGa, a germ cell-specific transcription factor required for ovarian follicle formation. Development 127:4645–4654

    PubMed  CAS  Google Scholar 

  • Sterneck E, Tassarollo L, Johnson PF (1997) An essential role for C/EBPb in female reproduction. Genes Dev 11:2153–2162

    Article  PubMed  CAS  Google Scholar 

  • Su YQ, Wu X, O’Brien MJ, Pendola FL, Denegre JN, Matzuk MM, Eppig JJ (2004) Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol 276:64–73

    Article  PubMed  CAS  Google Scholar 

  • Su YQ, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, Matzuk MM, Eppig JJ (2008) Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135:111–121

    Article  PubMed  CAS  Google Scholar 

  • Sugiura K, Eppig JJ, Society for Reproductive Biology Founders’ Lecture (2005a) Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod Fertil Dev 17:667–674

    Article  PubMed  CAS  Google Scholar 

  • Sugiura K, Pendola FL, Eppig JJ (2005b) Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol 279:20–30

    Article  PubMed  CAS  Google Scholar 

  • Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, O’Brien MJ, Matzuk MM, Shimasaki S, Eppig JJ (2007) Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134:2593–2603

    Article  PubMed  CAS  Google Scholar 

  • Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, Kojima A, Yoshitome A, Yamawaki K, Amagai M, Inoue A, Oshima T, Kakiitani M (2008) R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17:1278–1291

    Article  PubMed  CAS  Google Scholar 

  • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegué E, DePinho RA, Gilliland DG (2007) FoxOs are critical mediators of hematopoetic stem cell resistance to physiologic oxidative stress. Cell 128:325–339

    Article  PubMed  CAS  Google Scholar 

  • Tullet JMA, Pocock V, Steel JH, White R, Milligan S, Parker MG (2005) Multiple signaling defects in the absence of RIP140 impair both cumulus expansion and follicle rupture. Endocrinology 146:4127–4137

    Article  PubMed  CAS  Google Scholar 

  • Uda M, Ottolenghi C, Crisponi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilia G (2004a) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13:1171–1181

    Article  PubMed  CAS  Google Scholar 

  • Uda M, Ottolenghi C, Crisponi L, Garcia JE, Delana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pilla G (2004b) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13:1171–1181

    Article  PubMed  CAS  Google Scholar 

  • Uhlenbrock K, Gassenhuber H, Kostenis E (2002) Sphingosine 1-phosphate is a ligand of the human gpr3, gpr6 and gpr12 family of constitutively active G protein-coupled receptors. Cell Signal 14:941–953

    Article  PubMed  CAS  Google Scholar 

  • Vaccari S, Horner K, Mehlmann LM, Conti M (2008) Generation of mouse oocytes defective in cAMP synthesis and degradation: endogenous cyclic AMP is essential for meiotic arrest. Dev Biol 316:124–134

    Article  PubMed  CAS  Google Scholar 

  • Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405–409

    Article  PubMed  CAS  Google Scholar 

  • van der Vos KE, Coffer P (2008) FOXO-binding partners: it takes two to tango. Oncogene 27:2289–2299

    Article  PubMed  CAS  Google Scholar 

  • Vanderhyden BC, Macdonald EA, Nagyova E, Dhawan A (2003) Evaluation of members of the TGFbeta superfamily as candidates for the oocyte factors that control mouse cumulus expansion and steroidogenesis. Reprod Suppl 61:55–70

    PubMed  CAS  Google Scholar 

  • Vassalli A, Matzuk MM, Gardner H, Lee K, Jaenisch R (1994) Activin/inhibin bB subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev 8:414–427

    Article  PubMed  CAS  Google Scholar 

  • Wayne C, Fan HY, Cheng X, Richards JS (2007) FSH induces multiple signaling cascades: evidence that activation of SRC, RAS and EGF receptor impact granulosa cell differentiation. Mol Endocrinol 21:1940–1957

    Article  PubMed  CAS  Google Scholar 

  • Weck J, Mayo KE (2006) Switching of NR5A proteins associated with the inhibin alpha-subunit gene promoter after activation of the gene in granulosa cells. Mol Endocrinol 20:1090–1103

    Article  PubMed  CAS  Google Scholar 

  • West-Farrell ER, Xu M, Gomberg MA, Chow YH, Woodruff TK, Shea LD (2008) The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol Reprod 80(3):432–439

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Chen L, Brown CA, Yan C, Matzuk MM (2004) Interrelationship of growth differentiation factor 9 and inhibin in early folliculogenesis and ovarian tumorigenesis in mice. Mol Endocrinol 18:1509–1519

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Kreeger PK, Shea LD, Woodruff TK (2006) Tissue-engineered follicles produce live, fertile offspring. Tissue Eng 12:2739–2746

    Article  PubMed  CAS  Google Scholar 

  • Yan C, Wang P, DeMayo J, DeMayo F, Elvin J, Carino C, Prasad S, Skinner S, Dunbar B, Dube J, Celeste A, Matzuk M (2001) Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol 15:854–866

    Article  PubMed  CAS  Google Scholar 

  • Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A, Capel B (2004) Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230:210–215

    Article  PubMed  CAS  Google Scholar 

  • Yu RN, Ito M, Saunders TL, Camper SA, Jameson J (1998) Role of Ahch in gonadal development and gametogenesis. Nat Genet 20:353–357

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhao Y, Batres Y, Lin MF, Ying SY (1997) Regulation of growth and prostatic marker expression by activin A in an androgen-sensitive prostate cancer cell line LNCAP. Biochem Biophys Res Commun 234:362–365

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J, Klotsas A, Matika R, Xiao X, Franks R, Heindenreich KA, Sajan MP, Farese RV, Stolz DB, Tso P, Koo S-H, Montminy M, Unterman TG (2006) FoxO1 regulates multiple metabolic pathways in the liver. J Biol Chem 281:10105–10117

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZZ, Painter JN, Palmer JS, Webb PM, Hayward NK, Whiteman DC, Boomsma DI, Martin NG, Duffy DL, Montgomery GW (2008) Variation in bone morphogenetic protein 15 is not associated with spontaneous human dizygotic twinning. Hum Reprod 23:2372–2379

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Supported, in part, by NIH-HD-16229, -16272, -07945 (SCCPIR)(JSR)Burroughs Welkome Career Award in the Biomedical Sciences, Dan L. Duncan Cancer Center, Caroline Weiss Law Fund for Molecular Medicine (SAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JoAnne S. Richards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richards, J.S., Pangas, S.A. (2010). New Insights into Ovarian Function. In: Habenicht, UF., Aitken, R. (eds) Fertility Control. Handbook of Experimental Pharmacology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02062-9_1

Download citation

Publish with us

Policies and ethics