Skip to main content

Direct Numerical Simulations of turbulent flames to analyze flame/acoustic interactions

  • Chapter
  • First Online:
Combustion Noise

Abstract

Direct Numerical Simulations (DNS) are becoming increasingly important as a source of quantitative information to understand turbulent reacting flows. For the present project DNS have been mainly used to investigate in a well-defined manner the interaction between turbulent flames and isolated acoustic waves. This is a problem of fundamental interest with practical applications, for example for a better understanding of combustion instabilities. After developing a specific version of the well-known Rayleigh’s criterion, allowing to investigate local amplification or damping of an acoustic pulse interacting with a reaction front, extensive investigations have been carried out. The present publication summarizes the main findings of all these studies and describes in detail the underlying numerical and physical models, in particular those used to describe chemical reactions. Post-processing of DNS data in the light of turbulent combustion modeling is also discussed. The results illustrate the complexity of the coupling between reaction fronts and acoustics, since amplification and damping appear mostly side by side, as alternating layers. The influence of individual reactions and species on the damping process can also be quantified in this manner. This publications concludes with perspectives towards higher turbulence levels and effects of differential diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batley G, McIntosh A, Brindley J, Falle S (1994) A numerical study of the vorticity field generated by the baroclinic effect due to the propagation of a planar pressure wave through a cylindrical premixed laminar flame. J Fluid Mech 435:289–303

    Google Scholar 

  2. Baum M, Poinsot T, Thévenin D (1994) Accurate boundary conditions for multicomponent reactive flows. J Comput Phys 116:247–261

    Article  Google Scholar 

  3. Bell J, Day M, Grcar J, Lijewski M, Driscoll J, Filatyev S (2007) Numerical simulation of a laboratory-scale turbulent slot flame. Proc Combust Inst 31:1299–1307

    Article  Google Scholar 

  4. Candel S (1979) Numerical solution of wave scattering problems in the parabolic approximation. J Fluid Mech 90:465–507

    Article  MATH  MathSciNet  Google Scholar 

  5. Candel S (2002) Combustion dynamics and control: Progress and challenges. Proc Combust Inst 29:1–28

    Article  Google Scholar 

  6. Fiorina B, Baron R, Gicquel O, Thévenin D, Carpentier S, Darabiha N (2003) Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust Theory Modelling 7:449–470

    Google Scholar 

  7. Fox R (2003) Computational Models for Turbulent Reacting Flows. Cambridge University Press

    Google Scholar 

  8. Gicquel O, Darabiha N, Thévenin D (2000) Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc Combust Inst 28:1901–1908

    Article  Google Scholar 

  9. Hawkes E, Chen J (2004) Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames. Combust Flame 138(3):242–258

    Article  Google Scholar 

  10. Hawkes E, Sankaran R, Sutherland J, Chen J (2005) Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models. J Phys Conf Ser 16:65–79

    Article  Google Scholar 

  11. Hawkes E, Sankaran R, Sutherland J, Chen J (2007) Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics. Proc Combust Inst 31:1633–1640

    Article  Google Scholar 

  12. Hilbert R, Thévenin D (2002) Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combust Flame 128(1-2):22–37

    Article  Google Scholar 

  13. Hilbert R, Tap F, El-Rabii H, Thévenin D (2004) Impact of detailed chemistry and transport models on turbulent combustion simulations. Prog Energy Combust Sci 30:61–117

    Article  Google Scholar 

  14. Hinze JO (1975) Turbulence. McGraw-Hill

    Google Scholar 

  15. Honein A, Moin P (2004) Higher entropy conservation and numerical stability of compressible turbulence simulations. J Comput Phys 201:531–545

    Article  MATH  Google Scholar 

  16. Kee R, Miller J, Jefferson T (1980) Chemkin, a general purpose problem-independent transportable fortran chemical kinetics code package. Sandia National Laboratories Report SAND 80-8003

    Google Scholar 

  17. Kee R, Warnatz J, Miller J (1983) A fortran computer code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients. Sandia National Laboratories Report, SAND83-8209

    Google Scholar 

  18. Laverdant A, Thévenin D (2003) Interaction of a gaussian acoustic wave with a turbulent premixed flame. Combust Flame 134(1-2):11–19

    Article  Google Scholar 

  19. Laverdant A, Thévenin D (2005) Direct numerical simulation of a gaussian acoustic wave interaction with a turbulent premixed flame. Comptes Rendus de l’Académie des Sciences–Mécanique 333:29–37

    Google Scholar 

  20. Laverdant A, Gouarin L, Thévenin D (2007) Interaction of a gaussian acoustic wave with a turbulent non-premixed flame. Combust Theory Modelling 11(4):585–602

    Article  MATH  Google Scholar 

  21. Lesieur M (1997) Turbulence in Fluids. Kluwer Academic Publishers

    Google Scholar 

  22. Lieuwen T (2003) Modeling premixed combustion-acoustic wave interactions: a review. J Propu Power 19(5):765–781

    Article  Google Scholar 

  23. Lindstedt P (1998) Modeling of the chemical complexities of flames. Proc Combust Inst 27:269–285

    Google Scholar 

  24. Liu F, McIntosh A, Brindley J (1993) A numerical investigation of Rayleigh-Taylor effects in pressure wave-premixed flame interactions. Combust Sci Tech 91:373–386

    Article  Google Scholar 

  25. Maas U, Pope SB (1992) Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust Flame 88:239–264

    Article  Google Scholar 

  26. Maas U, Thévenin D (1998) Correlation analysis of direct numerical simulation data of turbulent non-premixed flames. Proc Combust Inst 27:1183–1189

    Google Scholar 

  27. Markstein G (1964) Nonsteady Flame Propagation. Pergamon Press, Paris

    Google Scholar 

  28. Monin A, Yaglom A (1979) Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press, Cambridge, MA

    Google Scholar 

  29. van Oijen J, Lammers F, de Goey L (2001) Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust Flame 127:2124–2134

    Article  Google Scholar 

  30. Peters N (2000) Turbulent Combustion. Cambridge University Press

    Google Scholar 

  31. Phong Bui T, Schröder W, Meinke M, Shalaby H, Thévenin D (2007) Source term evaluation of the APE-RF system using DNS data. Proc ECCOMAS CFD, (Wesseling, P, Oñate, E and Périaux, J, Eds) 188:1–14

    Google Scholar 

  32. Poinsot T, Lele S (1992) Boundary conditions for direct simulations of compressible viscous flow. J Comput Phys 101:104–129

    Article  MATH  MathSciNet  Google Scholar 

  33. Poinsot T, Veynante D (2005) Theoretical and Numerical Combustion. Edwards Publishing, PA, 2nd Edition

    Google Scholar 

  34. Pope S (1997) Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust Theory Modelling 1:41–63

    Article  MATH  MathSciNet  Google Scholar 

  35. Prasad K (1997) Interaction of pressure perturbations with premixed flames. Combust Flame 97:173–200

    Article  Google Scholar 

  36. Rayleigh J (1878) Nature 18(319)

    Google Scholar 

  37. Rayleigh J (1945) The Theory of Sound, vol II. NJ, Dover, New York

    Google Scholar 

  38. Shalaby H, Thévenin D (2006) Influence of the propagation direction for an acoustic wave interacting with a turbulent premixed flame. Proc Appl Math Mech 6:545–546

    Article  Google Scholar 

  39. Shalaby H, Laverdant A, Thévenin D (2005) Interaction of an acoustic wave with a turbulent premixed syngas flame. In: m.banu (eds.) Twelfth International Congress on Sound and Vibration, Lisbon, Portugal, pp 635/1–635/8

    Google Scholar 

  40. Shalaby H, Laverdant A, Thévenin D (2009) Direct numerical simulation of realistic acoustic wave interacting with a premixed flame. Proc Combust Inst 32:in press

    Google Scholar 

  41. Shalaby H, Laverdant A, Thévenin D (2009) Potential of direct numerical simulations to investigate flame/acoustic interactions. Acta Acust in press

    Google Scholar 

  42. Tap F, Hilbert R, Thévenin D, Veynante D (2004) A generalized flame surface density modelling approach for the auto-ignition of a turbulent non-premixed system. Combust Theory Modelling 8:165–193

    Article  Google Scholar 

  43. Thévenin D, Behrendt F, Maas U, Przywara B, Warnatz J (1996) Development of a parallel direct simulation code to investigate reactive flows. Comput Fluids 25(5):485–496

    Article  MATH  Google Scholar 

  44. Thévenin D, van Kalmthout E, Candel S (1997) Two-dimensional direct numerical simulations of turbulent diffusion flames using detailed chemistry. In: Direct and Large-Eddy Simulation II, (Chollet, J.P., Voke, P.R. and Kleiser, L., Eds.), Kluwer Academic Publishers, Amsterdam, pp 343–354

    Google Scholar 

  45. Thévenin D, Gicquel O, de Charentenay J, Hilbert R, Veynante D (2002) Two- versus three-dimensional direct simulations of turbulent methane flame kernels using realistic chemistry. Proc Combust Inst 29:2031–2038

    Article  Google Scholar 

  46. Veynante D, Vervisch L (2002) Turbulent combustion modeling. Prog Energy Combust Sci 28(3):193–266

    Article  Google Scholar 

  47. Warnatz J, Maas U, Dibble R (2001) Combustion. Springer, 3d Ed.

    Google Scholar 

  48. Yetter U, Dryer F, Rabitz H (1991) A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics. Combust Sci Tech 79:97–128

    Article  Google Scholar 

  49. Zistl C, Hilbert R, Janiga G, Thévenin D (2009) Increasing the efficiency of post-processing for turbulent reacting flows. Comput Visual Sci in press

    Google Scholar 

Download references

Acknowledgments

Most of this work has been financially supported by the Deutsche Forschungsgemeinschaft (DFG) in the frame of the Research Unit # 486 “Combustion Noise”. Part of the DNS computations have been carried out thanks to the support of the Leibniz Supercomputing Center in Munich (Project h1121).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fru, G., Shalaby, H., Laverdant, A., Zistl, C., Janiga, G., Thévenin, D. (2009). Direct Numerical Simulations of turbulent flames to analyze flame/acoustic interactions. In: Schwarz, A., Janicka, J. (eds) Combustion Noise. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02038-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02038-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02037-7

  • Online ISBN: 978-3-642-02038-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics