Skip to main content

Influence of boundary conditions on the noise emission of turbulent premixed swirl flames

  • Chapter
  • First Online:
Combustion Noise

Abstract

The main focus of subproject 6 was the development of time resolved experimental techniques for the analysis of the noise formation of turbulent premixed swirling flames. With these techniques the connection between the spatially and temporally fluctuating heat release in the reaction zone and the emitted noise spectrum could be investigated. In particular previous theoretical and experimental work could be extended such that a comprehensive picture of the noise-generating parameters in the flame was obtained.

This understanding was cast into a new method [12, 36], which allows the prediction of the fluctuating heat release spectrum from local mean values of turbulence and heat release. With this method it is possible to estimate the acoustic power spectral density of premixed swirl flames with good accuracy. Furthermore, the basic influences of turbulence intensity and length scale, fuel and mixture composition on the generated acoustical frequency spectrum appear naturally in this analysis, which allows to specifically design and optimize combustion systems with respect to noise emission.

The model was validated globally and in parts [36, 44] by using experimental mean data of turbulence and mean heat release as inputs and comparing the predicted model result with the corresponding measured quantity. It was shown successfully that the model could be used to calculate combustion noise on the basis of CFD results [11].

Further pursuing the title objective of this project, it was found that the model responded correctly to significant changes of boundary conditions. The basic theoretical analysis of a noise source in a confined acoustical system showed how to insert a CFD-based noise source spectrum into a thermo acoustical network code in order to calculate noise emission from a combustor. With this approach measured acoustic pressure spectra were reproduced with very good comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boineau P, Gervais Y, Morice V (1996) An aerothermoacoustic model for computation of sound radiated by turbulent flames. In: International Congress on Noise Control Engineering, Liverpool, Proc. Internoise 96

    Google Scholar 

  2. Boineau P, Gervais Y, Toquard M (1997) Spatio-frequential optical measurements of acoustic sources in a turbulent flame. In: International Congress on Noise Control Engineering, Budapest, Hungary, Proc. Internoise 97

    Google Scholar 

  3. Bragg SL (1963) Combustion noise. J of the Institute of Fuel 36:12–16

    Google Scholar 

  4. Cabra R, Hamno Y, Chen J, Dibble R, Acosta F, Holve D (2000) Ensemble diffraction measurements of spray combustion in a novel vitialed coflow turbulent jet flame burner, NASA/CR 2000-210466. National Aeronautics and Space Administration, Glenn Research Center

    Google Scholar 

  5. Clavin P, Siggia ED (1991) Turbulent premixed flames and sound generation. Combustion Science and Technology 78:147–155

    Article  Google Scholar 

  6. Crighton D, Dowling A, Ffowcs Williams J, Heckl M, Leppington F (1992) Modern Methods in Analytical Acoustics. Springer-Verlag Berlin Heidelberg New York

    Google Scholar 

  7. Fischer A (2004) Hybride, thermoakustische Charakterisierung von Drallbrennern. PhD thesis, Technische Universität München, Germany

    Google Scholar 

  8. Flemming F, Sadiki A, Janicka J, Wäsle J, Winkler A, Sattelmayer T (2005) Large eddy simulation and particle image velocimetry of an isothermal swirling flow. In: 69th Annual Meeting of the German Physical Society (DPG), Vol. 69

    Google Scholar 

  9. Haber LC (2000) An investigation into the origin, measurement and application of chemiluminescent light emissions from premixed flames. Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.

    Google Scholar 

  10. Hinze JO (1975) Turbulence, 2nd edn. Mc Graw-Hill, ISBN 0-07-029037-7

    Google Scholar 

  11. Hirsch C, Winkler A, Wäsle J, Sattelmayer T (2006) Calculating the turbulent noise source of premixed swirl flames from time mean reactive RANS variables. In: 13th International Congress on Sound and Vibration

    Google Scholar 

  12. Hirsch C, Wäsle J, Winkler A, Sattelmayer T (2007) A spectral model for the sound pressure from turbulent premixed combustion. In: 31st Symp (Int.) on Combustion, pp 1435–1441

    Google Scholar 

  13. Klein S (2000) On the acoustics of turbulent non-premixed flames. PhD thesis, University of Twente

    Google Scholar 

  14. Klein SA, Kok JBW (1999) Sound generation by turbulent non-premixed flames. Combustion Science and Technology 149/1-6:267–295

    Article  Google Scholar 

  15. Lauer M, Sattelmayer T (2007) Luftzahlmessung in einer turbulenten Drallflamme auf Basis spektral aufgelöster Chemilumineszenz. In: VDI-Berichte 1988, pp 735–741

    Google Scholar 

  16. Lauer M, Sattelmayer T (2008) Heat release calculation in a turbulent swirl flame from laser and chemiluminescence measurements. In: 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics

    Google Scholar 

  17. Levine H, Schwinger J (1948) On the radiation of sound from an unflanged circular pipe. Physical Review 73:383–406

    Article  MATH  MathSciNet  Google Scholar 

  18. Lighthill MJ (1952) On sound generated aerodynamically. Proc Royal Soc London, Series a 211:564–587

    Article  MATH  MathSciNet  Google Scholar 

  19. Mahan JR, Jones J (1984) Recovery of burner acoustic source structure from far-field sound spectra. AIAA Journal 22:631–637

    Article  Google Scholar 

  20. Mühlbauer B, Ewert R, Kornow O, Noll B, Delfs J, Aigner M (2008) Simulation of combustion noise using CAA with stochastic sound sources from RANS. In: 14th AIAA/CEAS Aeroacoutics Conference, Vancouver

    Google Scholar 

  21. Peters N (2000) Turbulent Combustion. Cambridge University Press, ISBN 0-521-66082-3

    Google Scholar 

  22. Pfadler S, Leipertz A, Dinkelacker F, Wäsle J, Winkler A, Sattelmayer T (2006) Two-dimensional direct measurement of the turbulent flux in turbulent premixed swirl flames. In: 31st Symp (Int.) on Combustion

    Google Scholar 

  23. Polifke W, Paschereit C, Döbbeling K (1999) Suppression of combustion instabilities through destructive interference of acoustic and entropy waves. In: 6th International Congress on Sound and Vibration, Copenhagen

    Google Scholar 

  24. Proudman I (1952) The generation of noise by isotropic turbulence. In: Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, vol 214, pp 119–132

    Google Scholar 

  25. Rajaram R, Lieuwen T (2003) Parametric studies of acoustic radiation from premixed flames. Combustion Science and Technology 175(12):29

    Article  Google Scholar 

  26. Ribner HS (1969) Quadrupole correlation governing the pattern of jet noise. J of Fluid Mech 38, part 1:1–24

    Article  Google Scholar 

  27. Rotta J (1972) Turbulente Strömungen. Teubner Verlag

    Google Scholar 

  28. Schmid HP (1995) Ein Verbrennungsmodell zur Beschreibung der Wärmefreisetzung von vorgemischten turbulenten Flammen. PhD thesis, Fakultät für Chemieingenieurwesen, TH Karlsruhe

    Google Scholar 

  29. Schmid HP, Habisreuther P (1998) A model for calculating heat release in premixed turbulent flames. Combustion and Flame 113:79–91

    Article  Google Scholar 

  30. Smith TJB, Kilham JK (1963) Noise generation by open turbulent flames. Journal of the Acoustic Society of America 35(5):715–724

    Article  Google Scholar 

  31. Strahle WC (1971) On combustion generated noise. J of Fluid Mech 49(2):399–414

    Article  MATH  Google Scholar 

  32. Strahle WC (1978) Combustion noise. Prog Energy Combust Sci 4:157–176

    Article  Google Scholar 

  33. Strahle WC (1982) Estimation of some correlations in a premixed reactive turbulent flow. Combustion Science and Technology 29:243–260

    Article  Google Scholar 

  34. Tennekes H, Lumley JL (1972) A First Course in Turbulence, 11th edn. The MIT Press, ISBN 0-262-200198

    Google Scholar 

  35. Trimis D, Durst F, Piekenäcker O, Piekenäcker K (1997) Porous medium combustor versus combustion systems with free flames. In: Proceedings 2nd International Symposium on Heat Transfer Enhancement and Energy

    Google Scholar 

  36. Wäsle H (2007) Vorhersage der Lärmemission turbulenter Vormischflammen. PhD thesis, Technische Universität München

    Google Scholar 

  37. Wäsle J, Winkler A, Weinmüller C, Sattelmayer T (2004) Real time measurement techniques for turbulent flame noise. In: 2nd International Workshop (SFB568), Heidelberg, Deutschland, vol 2, pp 111–118

    Google Scholar 

  38. Wäsle J, Winkler A, Sattelmayer T (2005) Experimentelle Untersuchungen zum akustischen Umsetzungsgrad in turbulenten Drallflammen. In: VDI Thermodynamik Kolloquium

    Google Scholar 

  39. Wäsle J, Winkler A, Sattelmayer T (2005) Influence of the combustion mode on acoustic spectra of open turbulent swirl flames. In: 12th International Congress on Sound and Vibration

    Google Scholar 

  40. Wäsle J, Winkler A, Sattelmayer T (2005) Spatial coherence of the heat release fluctuations in turbulent jet and swirl flames. Flow Turbulence and Combustion 75:29–50

    Article  MATH  Google Scholar 

  41. Wäsle J, Winkler A, Rössle E, Sattelmayer T (2006) Development of an annular porous burner for the investigation of adiabtic unconfined flames. In: 13th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics

    Google Scholar 

  42. Wäsle J, Winkler A, Lauer M, Sattelmayer T (2007) Combustion noise modeling using chemiluminescence data as indicator for the heat release distribution. In: ECM Proceedings

    Google Scholar 

  43. Weyermann F, Hirsch C, Sattelmayer T (2008) Numerische Simulation der Schallabstrahlung von eingeschlossenen turbulenten Flammen. In: Fortschitte der Akustik 2008, DEGA

    Google Scholar 

  44. Winkler A (2007) Validierung eines Modells zur Vorhersage turbulenten Verbrennungslärms. PhD thesis, Technische Universität München

    Google Scholar 

  45. Winkler A, Wäsle J, Sattelmayer T (2004) Investigation of combustion noise by real time laser measurement techniques. CFA/DAGA Gemeinschaftstagung, Strassburg

    Google Scholar 

  46. Winkler A, Wäsle J, Sattelmayer T (2004) Laserinduzierte Fluoreszenz in Echtzeit zur Bestimmung des Flammenlärms. Tagungsbericht GALA, Karlsruhe

    Google Scholar 

  47. Winkler A, Wäsle J, Sattelmayer T (2005) Experimental investigations on the acoustic efficiency of premixed swirl stabilized flames. In: 11th AIAA/CEAS Aeroacoustics Conference, AIAA-2005-2908

    Google Scholar 

  48. Winkler A, Wäsle J, Hirsch C, Sattelmayer T (2006) Peak frequency scaling of combustion noise from premixed flames. In: 13th International Congress on Sound and Vibration

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the German Research Council (DFG) through the Research Unit FOR486 Combustion Noise.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weyermann, F., Hirsch, C., Sattelmayer, T. (2009). Influence of boundary conditions on the noise emission of turbulent premixed swirl flames. In: Schwarz, A., Janicka, J. (eds) Combustion Noise. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02038-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02038-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02037-7

  • Online ISBN: 978-3-642-02038-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics