Skip to main content

On the Cubicity of AT-Free Graphs and Circular-Arc Graphs

  • Chapter
Book cover Graph Theory, Computational Intelligence and Thought

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5420))

  • 1040 Accesses

Abstract

A unit cube in k dimensions (k-cube) is defined as the Cartesian product R 1×R 2× ⋯ ×R k where R i (for 1 ≤ i ≤ k) is a closed interval of the form [a i ,a i  + 1] on the real line. A graph G on n nodes is said to be representable as the intersection of k-cubes (cube representation in k dimensions) if each vertex of G can be mapped to a k-cube such that two vertices are adjacent in G if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G denoted as cub(G) is the minimum k for which G can be represented as the intersection of k-cubes.

An interesting aspect about cubicity is that many problems known to be NP-complete for general graphs have polynomial time deterministic algorithms or have good approximation ratios in graphs of low cubicity. In most of these algorithms, computing a low dimensional cube representation of the given graph is usually the first step.

We give an O(bw·n) algorithm to compute the cube representation of a general graph G in bw + 1 dimensions given a bandwidth ordering of the vertices of G, where bw is the bandwidth of G. As a consequence, we get O(Δ) upper bounds on the cubicity of many well-known graph classes such as AT-free graphs, circular-arc graphs and cocomparability graphs which have O(Δ) bandwidth. Thus we have:

  1. 1

    cub(G) ≤ 3Δ− 1, if G is an AT-free graph.

  2. 1

    cub(G) ≤ 2Δ + 1, if G is a circular-arc graph.

  3. 1

    cub(G) ≤ 2Δ, if G is a cocomparability graph.

Also for these graph classes, there are constant factor approximation algorithms for bandwidth computation that generate orderings of vertices with O(Δ) width. We can thus generate the cube representation of such graphs in O(Δ) dimensions in polynomial time.

The work done by the first and second authors was partially supported by a DST grant SR/S3/EECE/62/2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golumbic, M.C.: Algorithmic Graph Theory And Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  2. Roberts, F.S.: On the boxicity and cubicity of a graph. In: Recent Progresses in Combinatorics, pp. 301–310. Academic Press, New York (1969)

    Google Scholar 

  3. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM Journal on Algebraic Discrete Methods 3, 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing 34(6), 1302–1323 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Afshani, P., Chan, T.: Approximation algorithms for maximum cliques in 3d unit-disk graphs. In: Proc. 17th Canadian Conference on Computational Geometry (CCCG), pp. 6–9 (2005)

    Google Scholar 

  6. van Leeuwen, E.J.: Approximation algorithms for unit disk graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 351–361. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. Theory Appl. 11, 209–218 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Efficient approximation algorithms for tiling and packing problems with rectangles. J. Algorithms 41, 443–470 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Michael, T., Quint, T.: Sphere of influence graphs and the l  ∞ -metric. Discrete Applied Mathematics 127, 447–460 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fishburn, P.C.: On the sphericity and cubicity of graphs. Journal of Combinatorial Theory, Series B 35(3), 309–318 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maehara, H.: Sphericity exceeds cubicity for almost all complete bipartite graphs. Journal of Combinatorial Theory, Series B 40(2), 231–235 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Michael, T., Quint, T.: Sphericity, cubicity, and edge clique covers of graphs. Discrete Applied Mathematics 154(8), 1309–1313 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chandran, L.S., Mannino, C., Orialo, G.: On the cubicity of certain graphs. Information Processing Letters 94, 113–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chandran, L.S., Francis, M.C., Sivadasan, N.: On the cubicity of interval graphs. Electronic Notes in Discrete Mathematics 29, 315–319 (2007)

    Article  MATH  Google Scholar 

  15. Unger, W.: The complexity of the approximation of the bandwidth problem. In: Proceedings of the 39th IEEE Annual Symposium on Foundations of Computer Science, pp. 82–91 (November 1998)

    Google Scholar 

  16. Feige, U.: Approximating the bandwidth via volume respecting embeddings. In: Prceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 90–99. ACM Press, New York (1998)

    Google Scholar 

  17. Turner, J.: On the probable performance of heuristics for bandwidth minimization. SIAM journal on computing 15, 561–580 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kratsch, D., Stewart, L.: Approximating bandwidth by mixing layouts of interval graphs. SIAM Journal on Discrete Mathematics 15(4), 435–449 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kloks, T., Kratsch, D., Borgne, Y.L., Müller, H.: Bandwidth of split and circular permutation graphs. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 243–254. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth of asteroidal triple-free graphs. Journal of algorithms 32(1), 41–57 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kratsch, D., Stewart, L.: Domination on cocomparability graphs. SIAM Journal on Discrete Mathematics 6(3), 400–417 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandran, L.S., Francis, M.C., Sivadasan, N. (2009). On the Cubicity of AT-Free Graphs and Circular-Arc Graphs. In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds) Graph Theory, Computational Intelligence and Thought. Lecture Notes in Computer Science, vol 5420. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02029-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02029-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02028-5

  • Online ISBN: 978-3-642-02029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics