Advertisement

The Extended Turing Model as Contextual Tool

  • S. Barry Cooper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5532)

Abstract

Computability concerns information with a causal – typically algorithmic – structure. As such, it provides a schematic analysis of many naturally occurring situations. We look at ways in which computability-theoretic structure emerges in natural contexts. We will look at how algorithmic structure does not just emerge mathematically from information, but how that emergent structure can model the emergence of very basic aspects of the real world.

Keywords

String Theory Turing Machine Causal Structure Spacetime Geometry Loop Quantum Cosmology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bojowald, M.: Loop quantum cosmology. In: Ashtekar, A. (ed.) 100 Years of Relativity — Space-Time Structure: Einstein and Beyond, pp. 382–414. World Scientific, Singapore (2006)Google Scholar
  2. 2.
    Bombelli, L., Lee, J., Meyer, D., Sorkin, R.D.: Spacetime as a causal set. Phys. Rev. Lett. 59, 521–524 (1987)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cooper, S.B.: Clockwork or Turing U/universe? - Remarks on causal determinism and computability. In: Cooper, S.B., Truss, J.K. (eds.) Models and Computability. London Mathematical Society Lecture Notes Series, vol. 259, pp. 63–116. Cambridge University Press, Cambridge (1999)Google Scholar
  4. 4.
    Cooper, S.B.: Computability Theory. Chapman & Hall/CRC, Boca Raton (2004)zbMATHGoogle Scholar
  5. 5.
    Cooper, S.B.: Definability as hypercomputational effect. Applied Mathematics and Computation 178, 72–82 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cooper, S.B.: How Can Nature Help Us Compute? In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 1–13. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cooper, S.B.: Computability and emergence. In: Gabbay, M., Goncharov, S.S., Zakharyaschev, M. (eds.) Mathematical Problems from Applied Logic I. Logics for the XXIst Century. Springer International Mathematical Series, vol. 4, pp. 193–231 (2006)Google Scholar
  8. 8.
    Cooper, S.B., Odifreddi, P.: Incomputability in Nature. In: Cooper, S.B., Goncharov, S.S. (eds.) Computability and Models, pp. 137–160. Kluwer Academic/Plenum, Dordrecht/New York (2003)Google Scholar
  9. 9.
    Einstein, A.: Autobiographical Notes. In: Schilpp, P. (ed.) Albert Einstein: Philosopher-Scientist. Open Court Publishing (1969)Google Scholar
  10. 10.
    Friedan, D.: A Tentative Theory of Large Distance Physics. J. High Energy Phys. JHEP10, 063 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hodges, A., Turing, A.: The Enigma, Vintage, London, Melbourne, Johannesburg (1992)Google Scholar
  12. 12.
    Kreisel, G.: Mathematical logic: What has it done for the philosophy of mathematics? In: Schoenman, R. (ed.) Bertrand Russell, Philosopher of the Century, Allen and Unwin, London, pp. 201–272 (1967)Google Scholar
  13. 13.
    Kreisel, G.: Church’s Thesis: a kind of reducibility axiom for constructive mathematics. In: Kino, A., Myhill, J., Vesley, R.E. (eds.) Intuitionism and proof theory: Proceedings of the Summer Conference at Buffalo N.Y. 1968, pp. 121–150. North-Holland, Amsterdam (1970)CrossRefGoogle Scholar
  14. 14.
    Kuhn, T.S.: The Structure of Scientific Revolutions, 3rd edn. University of Chicago Press, Chicago (1996)Google Scholar
  15. 15.
    Newton, I.: Philosophiae Naturalis Principia Mathematica, London (1687)Google Scholar
  16. 16.
    Penrose, R.: Quantum physics and conscious thought. In: Hiley, J., Peat, F.D. (eds.) Quantum Implications: Essays in honour of David Bohm, pp. 105–120. Routledge & Kegan Paul, London (1987)Google Scholar
  17. 17.
    Rogers Jr., H.: Some problems of definability in recursive function theory. In: Crossley, J.N. (ed.) Sets, Models and Recursion Theory. Proceedings of the Summer School in Mathematical Logic and Tenth Logic Colloquium, Leicester, pp. 183–201. North-Holland, Amsterdam (1965)Google Scholar
  18. 18.
    Smolin, L.: The Trouble With Physics: The Rise of String Theory, the Fall of Science and What Comes Next. Allen Lane/Houghton Mifflin, London, New York (2006)Google Scholar
  19. 19.
    Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42, 230–265 (1936-1937); Turing, A.M.: Collected Works: Mathematical Logic, 18–53 (reprint)zbMATHCrossRefGoogle Scholar
  20. 20.
    Turing, A.: Systems of logic based on ordinals. Proceedings of the London Mathematical Society 45, 161–228 (1939); Turing, A.M.: Collected Works: Mathematical Logic, 81–148 (reprint)zbMATHCrossRefGoogle Scholar
  21. 21.
    Turing, A.M.: Collected Works: Mathematical Logic. In: Gandy, R.O., Yates, C.E.M. (eds.). Elsevier, Amsterdam (2001)Google Scholar
  22. 22.
    Woit, P.: Not Even Wrong: The Failure of String Theory and the Continuing Challenge to Unify the Laws of Physics, Jonathan Cape, London (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Barry Cooper
    • 1
  1. 1.School of MathematicsUniversity of LeedsLeedsU.K.

Personalised recommendations