Advertisement

An Observation on Non-Malleable Witness-Indistinguishability and Non-Malleable Zero-Knowledge

  • Zongyang Zhang
  • Zhenfu Cao
  • Rong Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5532)

Abstract

Ostrovsky et al. [1] gave the first definition of non-malleable witness-indistinguishable argument systems. A surprising result given by them showed this notion was incomparable with the notion of non-malleable zero-knowledge. However, they only discussed their relations in the interactive setting. In this paper, we make an observation on relation between the two notions in the non-interactive setting. We show the two notions are still incomparable: that is, there are non-malleable non-interactive zero-knowledge proof systems that are not non-malleable non-interactive witness-indistinguishable, and vice versa.

Keywords

Proof System Commitment Scheme Common Reference String Trapdoor Permutation Plain Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent nmwi and its relation to nmzk. Technical Report ECCC report TR06-095 (2006)Google Scholar
  2. 2.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 186–208 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC, pp. 416–426. ACM, New York (1990)Google Scholar
  4. 4.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30, 391–437 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: FOCS, pp. 345–355. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  6. 6.
    Pass, R., Rosen, A.: New and improved constructions of nonmalleable cryptographic protocols. SIAM J. Comput. 38, 702–752 (2008)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: FOCS, pp. 186–195. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  9. 9.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503. ACM, New York (2002)Google Scholar
  10. 10.
    Santis, A.D., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Dwork, C., Naor, M.: Zaps and their applications. In: FOCS, pp. 283–293. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  12. 12.
    Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for nizk. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Goldreich, O.: The Foundations of Cryptography, vol. 1. Cambridge University Press, US (2001)Google Scholar
  14. 14.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  15. 15.
    Santis, A.D., Crescenzo, G.D., Persiano, G.: Necessary and sufficient assumptions for non-iterative zero-knowledge proofs of knowledge for all np relations. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 451–462. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptology 7, 1–32 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zongyang Zhang
    • 1
  • Zhenfu Cao
    • 1
  • Rong Ma
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations