Advertisement

Greedy Local Search and Vertex Cover in Sparse Random Graphs

(Extended Abstract)
  • Carsten Witt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5532)

Abstract

Recently, various randomized search heuristics have been studied for the solution of the minimum vertex cover problem, in particular for sparse random instances according to the G(n,c/n) model, where c > 0 is a constant. Methods from statistical physics suggest that the problem is easy if c < e. This work starts with a rigorous explanation for this claim based on the refined analysis of the Karp-Sipser algorithm by Aronson et al. Subsequently, theoretical supplements are given to experimental studies of search heuristics on random graphs. For c < 1, a greedy and randomized local-search heuristic finds an optimal cover in polynomial time with a probability arbitrarily close to 1. This behavior relies on the absence of a giant component. As an additional insight into the randomized search, it is shown that the heuristic fails badly also on graphs consisting of a single tree component of maximum degree 3.

Keywords

Random Graph Vertex Cover Giant Component Optimal Cover Minimum Vertex Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronson, J., Frieze, A., Pittel, B.G.: Maximum matchings in sparse random graphs: Karp-Sipser revisited. Random Structures and Algorithms 12(2), 111–177 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bauer, M., Golinelli, O.: Core percolation in random graphs: a critical phenomena analysis. The European Physical Journal B 24(3), 339–352 (2001)CrossRefGoogle Scholar
  3. 3.
    Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  5. 5.
    Evans, I.K.: Evolutionary algorithms for vertex cover. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 377–386. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn., vol. 1. Wiley, Chichester (1968)zbMATHGoogle Scholar
  7. 7.
    Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. In: Proc. of GECCO 2007, pp. 797–804. AMC Press (2007)Google Scholar
  8. 8.
    Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Analyses of simple hybrid evolutionary algorithms for the vertex cover problem. Evolutionary Computation 17(1), 3–20 (2009)CrossRefGoogle Scholar
  9. 9.
    Gamarnik, D., Nowicki, T., Swirscsz, G.: Maximum weight independent sets and matchings in sparse random graphs. Exact results using the local weak convergence method. Random Structures and Algorithms 28(1), 76–106 (2005)CrossRefGoogle Scholar
  10. 10.
    Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Hartmann, A., Weigt, M.: Statistical mechanics perspective on the phase transition in vertex covering of finite-connectivity random graphs. Theoretical Computer Science  (265), 199–225 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Karp, R.M., Sipser, M.: Maximum matchings in sparse random graphs. In: Proc. of FOCS 1981, pp. 364–375. IEEE Press, Los Alamitos (1981)Google Scholar
  13. 13.
    Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science 378(1), 32–40 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization algorithm. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618–627. Springer, Heidelberg (2006); Extended version to appear in AlgorithmicaCrossRefGoogle Scholar
  15. 15.
    Oliveto, P.S., He, J., Yao, X.: Evolutionary algorithms and the vertex cover problem. In: Proc. of CEC 2007, pp. 1870–1877. IEEE Press, Los Alamitos (2007)Google Scholar
  16. 16.
    Pelikan, M., Kalapala, R., Hartmann, A.K.: Hybrid evolutionary algorithms on minimum vertex cover for random graphs. In: Proc. of GECCO 2007, pp. 547–554. ACM Press, New York (2007)Google Scholar
  17. 17.
    Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM Journal on Computing 6(3), 537–546 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Wegener, I.: Simulated annealing beats metropolis in combinatorial optimization. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 589–601. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 44–56. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Carsten Witt
    • 1
  1. 1.DTU InformaticsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations