Advertisement

Improved Deterministic Algorithms for Weighted Matching and Packing Problems

  • Qilong Feng
  • Yang Liu
  • Songjian Lu
  • Jianxin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5532)

Abstract

For the weighted rD-Matching problem, we present a deterministic parameterized algorithm with time complexity O *(4(r − 1)k ), improving the previous best upper bound O *(4 rk ). In particular, the algorithm can be applied to solve the unweighted 3D-Matching problem with time O *(16 k ), improving the previous best result O *(21.26 k ). For the weighted r-Set Packing problem, we present a deterministic parameterized algorithm with time complexity O *(2(2r − 1)k ), improving the previous best result O *(22rk ). The algorithm, when applied to the unweighted 3-Set Packing problem, has running time O *(32 k ), improving the previous best result O *(43.62 k ). Moreover, for the weighted rD-Matching and weighted r-Set Packing problems, we get a kernel of size O(k r ).

Keywords

Time Complexity Maximum Weight Packing Problem Parameterized Algorithm Deterministic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)Google Scholar
  2. 2.
    Liu, Y., Chen, J., Wang, J.: On efficient FPT algorithms for weighted matching and packing problems. In: Proc. 4th Ann. Conference on Theory and Applications of Models of Computation (TAMC 2007). LNCS, vol. 4484, pp. 575–586 (2007)Google Scholar
  3. 3.
    Wang, J., Feng, Q.: Improved parameterized algorithms for weighted 3-set packing. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 130–139. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Kneis, J., Lu, S., Mölle, D., Richter, S., Rossmanith, P., Sze, S., Zhang, F.: Randomized divide-and-conquer: improved path, matching, and packing algorithms. SIAM Journal on Computing (to appear)Google Scholar
  5. 5.
    Fellows, M., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thilikos, D., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 311–322. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Chen, J., Friesen, D., Jia, W., Kanj, I.: Using nondeterminism to design efficient deterministic algorithms. Algorithmica 40, 83–97 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set packing. Journal of Algorithms 50, 106–117 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Koutis, I.: A faster parameterized algorithm for set packing. Information Processing Letters 94, 7–9 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Liu, Y., Lu, S., Chen, J., Sze, S.H.: Greedy localization and color-coding: improved matching and packing algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Wang, J., Feng, Q.: An O *(3.523k) parameterized algorithm for 3-set packing. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 82–93. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Williams, R.: Finding paths of length k in O*(2k) time, arXiv:0807.3026v2 [cs.DS] (2008)Google Scholar
  13. 13.
    Naor, M., Schulman, L., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proc. 39th Annual Symposium on Foundatins of Computer Science (FOCS 1995), pp. 182–190 (1995)Google Scholar
  14. 14.
    Fredman, M., Komlos, J., Szemeredi, E.: Storing a sparse table with O(1) worst case access time. Journal of the ACM 31, 538–544 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd edn. Cambridge Univesity Press, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Qilong Feng
    • 1
  • Yang Liu
    • 2
  • Songjian Lu
    • 2
  • Jianxin Wang
    • 1
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaP.R. China
  2. 2.Department of Computer Science and EngineeringTexas A&M UniversityUSA

Personalised recommendations