Advertisement

Minimum Vertex Ranking Spanning Tree Problem on Permutation Graphs

  • Ruei-Yuan Chang
  • Guanling Lee
  • Sheng-Lung Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5532)

Abstract

The minimum vertex ranking spanning tree problem on graph G is to find a spanning tree T of G such that the minimum vertex ranking of T is minimum among all possible spanning trees of G. In this paper, we propose a linear-time algorithm for this problem on permutation graphs. It improves a previous result that runs in O(n 3) time where n is the number of vertices in the input graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhattacharjee, A., Hasan, C.S., Kashem, M.A.: An Algorithm for Solving the Minimum Vertex Ranking Spanning Tree Problem on Series-Parallel Graphs. In: 4th International Conference on Electrical and Computer Engineering, pp. 328–332 (2006)Google Scholar
  2. 2.
    Chang, R.-Y., Lee, G., Peng, S.-L.: Minimum Vertex Ranking Spanning Tree Problem on Some Classes of Graphs. In: International Conference on Intelligent Computing, pp. 758–765 (2008)Google Scholar
  3. 3.
    Deng, H., Guha, S., Sen, A.: On a Graph Partition Problem with Application to VLSI Layout. Information Processing Letters 43, 87–94 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Greenlaw, R., Schäffer, A.A., de la Torre, P.: Optimal Edge Ranking of Trees in Polynomial Time. Algorithmica 13, 592–618 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Iyer, A.V., Ratliff, H.D., Vijayan, G.: Parallel Assembly of Modular Products–an Analysis. Technical Report, Georgia Institute of Technology (1988)Google Scholar
  6. 6.
    Iyer, A.V., Ratliff, H.D., Vijayan, G.: On Edge Ranking Problems of Trees and Graphs. Discrete Applied Mathematics 30, 43–52 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Leiserson, C.E.: Area Efficient Graph Layouts for VLSI. In: 21st Annual IEEE Symposium of Foundations of Computer Science, pp. 270–281 (1980)Google Scholar
  8. 8.
    Masuyama, S., Miyata, K., Nakayama, S., Zhao, L.: NP-Hardness Proof and an Approximation Algorithm for the Minimum Vertex Ranking Spanning Tree Problem. Discrete Applied Mathematics 154, 2402–2410 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Masuyama, S., Nakayama, S.: An Algorithm for Solving the Minimum Vertex Ranking Spanning Tree Problem on Interval Graphs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 86-A(5), 1019–1026 (2003)Google Scholar
  10. 10.
    Masuyama, S., Nakayama, S.: An 0(n 3) Time Algorithm for Obtaining the Minimum Vertex Ranking Spanning Tree on Permutation Graphs. In: 4th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (2005)Google Scholar
  11. 11.
    Masuyama, S., Nakayama, S.: A Polynomial Time Algorithm for Obtaining a Minimum Vertex Ranking Spanning Tree in Outerplannar Graphs. IEICE Transactions on Information and Systems 89-D(8), 2357–2363 (2006)Google Scholar
  12. 12.
    Nevins, J., Whitney, D.: Concurrent Design of Products and Processes. McGraw-Hill, New York (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ruei-Yuan Chang
    • 1
  • Guanling Lee
    • 1
  • Sheng-Lung Peng
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Dong Hwa UniversityTaiwan

Personalised recommendations