Advertisement

Block-Graph Width

  • Maw-Shang Chang
  • Ling-Ju Hung
  • Ton Kloks
  • Sheng-Lung Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5532)

Abstract

The \(\mathcal{G}\)-width of a class of graphs \(\mathcal{G}\) is defined as follows. A graph G has \(\mathcal{G}\)-width k if there are k independent sets \(\mathbb{N}_1,\dots,\mathbb{N}_{\rm \tt k}\) in G such that G can be embedded into a graph \({\rm H \in \mathcal{G}}\) such that for every edge e in H which is not an edge in G, there exists an i such that both endpoints of e are in ℕi. For the class \(\mathfrak{B}\) of block graphs we show that \(\mathfrak{B}\)-width is NP-complete and we present fixed-parameter algorithms.

Keywords

Decomposition Tree Chordal Graph Graph Class Block Graph Induce Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: A survey. In: SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (1999)Google Scholar
  2. 2.
    Chang, M.-S., Hsieh, S.-Y., Chen, G.-H.: Dynamic programming on distance-hereditary graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 344–353. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Courcelle, B., Oum, S.: Vertex minors, monadic second-order logic, and a conjecture by Seese. Journal of Combinatorial Theory, Series B 97, 91–126 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. Journal of Algorithms 19, 449–473 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society 2, 326–336 (1952)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Computer Journal 51, 326–362 (2008)CrossRefGoogle Scholar
  7. 7.
    Kay, D.C., Chartrand, G.: A characterization of certain ptolemaic graphs. Canadian Journal of Mathematics 17, 342–346 (1965)zbMATHMathSciNetGoogle Scholar
  8. 8.
    McMorris, F.R., Wang, C., Zhang, P.: On probe interval graphs. Discrete Applied Mathematics 88, 315–324 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indagationes Mathematicae 39, 406–424 (1977)MathSciNetGoogle Scholar
  10. 10.
    Oum, S.: Rank–width and vertex–minors. Journal of Combinatorial Theory, Series B 95, 79–100 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Oum, S.: Graphs of bounded rank-width. PhD Thesis. Princeton University, Princeton (2005)Google Scholar
  12. 12.
    Petkovšek, M.: Letter graphs and well-quasi-order by induced subgraphs. Discrete Mathematics 244, 375–388 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal of Computing 1, 146–160 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Zhang, P., Schon, E.A., Fischer, S.G., Cayanis, E., Weiss, J., Kistler, S., Bourne, P.E.: An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. CABIOS 10, 309–317 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maw-Shang Chang
    • 1
  • Ling-Ju Hung
    • 1
  • Ton Kloks
    • 3
  • Sheng-Lung Peng
    • 2
  1. 1.Department of Computer Science and Information EngineeringNational Chung Cheng UniversityTaiwan
  2. 2.Department of Computer Science and Information EngineeringNational Dong Hwa UniversityShoufeng, HualienTaiwan
  3. 3.No Affiliations 

Personalised recommendations