Advertisement

A Quadratic Kernel for 3-Set Packing

  • Faisal N. Abu-Khzam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5532)

Abstract

We present a reduction procedure that takes an arbitrary instance of the 3-Set Packing problem and produces an equivalent instance whose number of elements is bounded by a quadratic function of the input parameter. Such parameterized reductions are known as kernelization algorithms, and each reduced instance is called a problem kernel. Our result improves on previously known kernelizations and can be generalized to produce improved kernels for the r-Set Packing problem whenever r is a fixed constant. Improved kernelization for r-Dimensional-Matching can also be inferred.

Keywords

Fixed-parameter algorithms kernelization crown decomposition Set Packing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown Structures for Vertex Cover Kernelization. Theory of Computing Systems (TOCS) 41(3), 411–430 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chor, B., Fellows, M.R., Juedes, D.: Linear Kernels in Linear Time, or How to Save k Colors in O(n 2) Steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)Google Scholar
  4. 4.
    Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for matching and packing problems. Algorithmica 52(2), 167–176 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set packing. J. Algorithms 50, 106–117 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Koutis, I.: A faster parameterized algorithm for set packing. Information Processing Letters 94, 7–9 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Liu, Y., Chen, J., Wang, J.: Parameterized Algorithms for Weighted Matching and Packing Problems. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 692–702. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Faisal N. Abu-Khzam
    • 1
  1. 1.Department of Computer Science and MathematicsLebanese American UniversityBeirutLebanon

Personalised recommendations