Skip to main content

Computing Elevation Maxima by Searching the Gauss Sphere

  • Conference paper
Book cover Experimental Algorithms (SEA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5526))

Included in the following conference series:

  • 1002 Accesses

Abstract

The elevation function on a smoothly embedded 2-manifold in ℝ3 reflects the multiscale topography of cavities and protrusions as local maxima. The function has been useful in identifying coarse docking configurations for protein pairs. Transporting the concept from the smooth to the piecewise linear category, this paper describes an algorithm for finding all local maxima. While its worst-case running time is the same as of the algorithm used in prior work, its performance in practice is orders of magnitudes superior. We cast light on this improvement by relating the running time to the total absolute Gaussian curvature of the 2-manifold.

This research is partially supported by the Defense Advanced Research Projects Agency (DARPA) under grants HR0011-05-1-0007 and HR0011-05-1-0057.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Computational Geometry Algorithms Library, http://www.cgal.org

  2. Banchoff, T.F.: Critical points and curvature for embedded polyhedral surfaces. Amer. Math. Monthly 77, 475–485 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. The biogeometry web-pages, http://www.biogeometry.duke.edu

  4. Agarwal, P.K., Edelsbrunner, H., Harer, J., Wang, Y.: Extreme elevation on a 2-manifold. Discrete Comput. Geom. 36, 553–572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alboul, L., Echeverria, G.: Polyhedral Gauss maps and curvature characterization of triangle meshes. LNCS, vol. 3605, pp. 14–33. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  6. Cazals, F., Chazal, F., Lewiner, T.: Molecular shape analysis based upon the Morse-Smale complex and the Connolly function. In: Proc. 19th Ann. Sympos. Comput. Geom., pp. 351–360 (2003)

    Google Scholar 

  7. Cheng, H.L., Dey, T.K., Edelsbrunner, H., Sullivan, J.: Dynamic skin triangulation. Discrete Comput. Geom. 25, 525–568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. (to appear)

    Google Scholar 

  10. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in Reeb graphs of 2-manifolds. Discrete Comput. Geom. 32, 231–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Connolly, M.L.: Analytic molecular surface calculation. J. Appl. Crystallogr. 6, 548–558 (1983)

    Article  Google Scholar 

  12. Connolly, M.L.: Shape complementarity at the hemoglobin albl subunit interface. Biopolymers 25, 1229–1247 (1986)

    Article  Google Scholar 

  13. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry — Algorithms and Applications. Springer, Berlin (1997)

    MATH  Google Scholar 

  14. Edelsbrunner, H.: Deformable smooth surface design. Discrete Comput. Geom. 21, 87–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Georgiadis, L., Tarjan, R., Werneck, R.F.: Design of data structure for mergeable trees. In: Proc. 17th Ann. ACM-SIAM Sympos. Discrete Algorithm, pp. 394–403 (2006)

    Google Scholar 

  17. Morvan, J.: Generalized Curvatures. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  18. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  19. Petterson, E.F., Goddard, T.D., Huang, C.C., Gouch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera — a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  Google Scholar 

  20. Sanner, M.F., Olson, A.J.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996)

    Article  Google Scholar 

  21. Santaló, L.: Integral geometry and geometric probability. Addison-Wesley, Reading (1976)

    MATH  Google Scholar 

  22. Cohen-Steiner, D., Morvan, J.: Second fundamental measure of geometric sets and local approximation of curvatures. J. Differential Geom. 74(3), 363–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, Y., Agarwal, P.K., Brown, P., Edelsbrunner, H., Rudolph, J.: Course and reliable geometric alignment for protein docking. In: Proc. Pacific Sympos. Biocomputing 2005, pp. 64–75. World Scientific, Singapore (2005)

    Google Scholar 

  24. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  25. Zomorodian, A., Edelsbrunner, H.: Fast software for box intersections. Internat. J. Comput. Geom. Appl. 12, 143–172 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, B., Edelsbrunner, H., Morozov, D. (2009). Computing Elevation Maxima by Searching the Gauss Sphere. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02011-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02010-0

  • Online ISBN: 978-3-642-02011-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics