Skip to main content

Haplotype Inference in Complex Pedigrees

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

Despite the desirable information contained in complex pedigree datasets, analysis methods struggle to efficiently process these datasets. The attractiveness of pedigree data sets is their power for detecting rare variants, particularly in comparison with studies of unrelated individuals. In addition, rather than assuming individuals in a study are unrelated, knowledge of their relationships can avoid spurious results due to confounding population structure effects. However, a major challenge for the applicability of pedigree methods is the ability handle complex pedigrees, having multiple founding lineages, inbreeding, and half-sibling relationships.

A key ingredient in association studies is imputation and inference of haplotypes from genotype data. Existing haplotype inference methods either do not efficiently scales to complex pedigrees or their accuracy is limited. In this paper, we present algorithms for efficient haplotype inference and imputation in complex pedigrees. Our method, PhyloPed, leverages the perfect phylogeny model, resulting in an efficient method with high accuracy. In addition, PhyloPed effectively combines the founder haplotype information from different lineages and is immune to inaccuracies in prior information about the founders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abney, M., Ober, C., McPeek, M.S.: Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: Fasting serum-insulin level in the hutterites. The American Journal of Human Genetics 70(4), 920–934 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Barrett, J.C., Hansoul, S., Nicolae, D.L., Cho, J.H., Duerr, R.H., Rioux, J.D., Brant, S.R., Silverberg, M.S., Taylor, K.D., Barmada, M.M., et al.: Genome-wide association defines more than 30 distinct susceptibility loci for crohn’s disease. Nature Genetics 40, 955–962 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burdick, J.T., Chen, W., Abecasis, G.R., Cheung, V.G.: In silico method for inferring genotyeps in pedigrees. Nature Genetics 38, 1002–1004 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cannings, C., Sheehan, N.A.: On a Misconception About Irreducibility of the Single-Site Gibbs Sampler in a Pedigree Application. Genetics 162(2), 993–996 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, W.-M., Abecasis, G.R.: Family-based association tests for genomewide association scans. American Journal of Human Genetics 81, 913–926 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., Lander, E.S.: High-resolution haplotype structure in the human genome. Nature Genetics 29(2), 229–232 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for perfect phylogeny haplotyping. Journal of Computational Biology 2, 522–553 (2006)

    Article  Google Scholar 

  8. Elston, R.C., Stewart, J.: A general model for the analysis of pedigree data. Human Heredity 21, 523–542 (1971)

    Article  CAS  PubMed  Google Scholar 

  9. Eskin, E., Halperin, E., Karp, R.: Efficient reconstruction of haplotype structure via perfect phylogeny. Journal of Bioinformatics and Computational Biology 1(1), 1–20 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihood haplotyping for general pedigrees. Human Heredity 59, 41–60 (2005)

    Article  PubMed  Google Scholar 

  11. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In: Proceedings of the 6th Annual International Conference on (Research in) Computational (Molecular) Biology (2002)

    Google Scholar 

  12. Halperin, E., Kimmel, G., Shamir, R.: Tag SNP selection in genotype data for maximizing SNP prediction accuracy. Bioinformatics 21(suppl. 1), i195–i203 (2005)

    Article  Google Scholar 

  13. Jensen, C.S., Kong, A.: Blocking gibbs sampling for linkage analysis in large pedigrees with many loops. American Journal of Human Genetics 65 (1999)

    Google Scholar 

  14. Lander, E.S., Green, P.: Construction of multilocus genetic linkage maps in humans. Proceedings of the National Academy of Science 84(5), 2363–2367 (1987)

    Article  CAS  Google Scholar 

  15. Lauritzen, S.L., Sheehan, N.A.: Graphical models for genetic analysis. Statistical Science 18(4), 489–514 (2003)

    Article  Google Scholar 

  16. Piccolboni, A., Gusfield, D.: On the complexity of fundamental computational problems in pedigree analysis. Journal of Computational Biology 10(5), 763–773 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Sutter, N.B., Bustamante, C.D., Chase, K., Gray, M.M., Zhao, K., Zhu, L., Padhukasahasram, B., Karlins, E., Davis, S., Jones, P.G., Quignon, P., Johnson, G.S., Parker, H.G., Fretwell, N., Mosher, D.S., Lawler, D.F., Satyaraj, E., Nordborg, M., Lark, K.G., Wayne, R.K., Ostrander, E.A.: A Single IGF1 Allele Is a Major Determinant of Small Size in Dogs. Science 316(5821), 112–115 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thomas, A., Abkevich, V., Gutin, A., Bansal, A.: Multilocus linkage analysis by blocked gibbs sampling. Statistics and Computing 10(3), 259–269 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirkpatrick, B., Rosa, J., Halperin, E., Karp, R.M. (2009). Haplotype Inference in Complex Pedigrees. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics