Skip to main content

A Probabilistic Graphical Model for Ab Initio Folding

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

Despite significant progress in recent years, ab initio folding is still one of the most challenging problems in structural biology. This paper presents a probabilistic graphical model for ab initio folding, which employs Conditional Random Fields (CRFs) and directional statistics to model the relationship between the primary sequence of a protein and its three-dimensional structure. Different from the widely-used fragment assembly method and the lattice model for protein folding, our graphical model can explore protein conformations in a continuous space according to their probability. The probability of a protein conformation reflects its stability and is estimated from PSI-BLAST sequence profile and predicted secondary structure. Experimental results indicate that this new method compares favorably with the fragment assembly method and the lattice model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wu, S., Skolnick, J., Zhang, Y.: Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biology 5, 17+ (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Misura, K.M., Chivian, D., Rohl, C.A., Kim, D.E., Baker, D.: Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proceedings of National Academy Sciences 103(14), 5361–5366 (2006)

    Article  CAS  Google Scholar 

  3. Zhang, Y., Skolnick, J.: The protein structure prediction problem could be solved using the current PDB library. Proceedings of National Academy Sciences, USA 102(4), 1029–1034 (2005)

    Article  CAS  Google Scholar 

  4. Moult, J., Fidelis, K., Rost, B., Hubbard, T., Tramontano, A.: Critical assessment of methods of protein structure prediction (CASP)–round 6. Proteins: Structure, Function and Bioinformatics 61(suppl. 7), 3–7 (2005)

    Article  CAS  Google Scholar 

  5. Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B., Hubbard, T., Tramontano, A.: Critical assessment of methods of protein structure prediction-Round VII. Proteins: Structure, Function, and Bioinformatics 69(S8), 3–9 (2007)

    Article  CAS  Google Scholar 

  6. Jones, T.A., Thirup, S.: Using known substructures in protein model building and crystallography. EMBO Journal 5, 819–823 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Claessens, M., van Cutsem, E., Lasters, I., Wodak, S.: Modelling the polypeptide backbone with śpare partsf́rom known protein structures. Protein Engineering 2(5), 335–345 (1989)

    Article  CAS  PubMed  Google Scholar 

  8. Unger, R., Harel, D., Wherland, S., Sussman, J.L.: A 3D building blocks approach to analyzing and predicting structure of proteins. Proteins: Structure, Function and Genetics 5(4), 355–373 (1989)

    Article  CAS  Google Scholar 

  9. Simon, I., Glasser, L., Scheraga, H.A.: Calculation of Protein Conformation as an Assembly of Stable Overlapping Segments: Application to Bovine Pancreatic Trypsin Inhibitor. Proceedings of National Academy Sciences, USA 88(9), 3661–3665 (1991)

    Article  CAS  Google Scholar 

  10. Levitt, M.: Accurate modeling of protein conformation by automatic segment matching. Journal of Molecular Biology 226(2), 507–533 (1992)

    Article  CAS  PubMed  Google Scholar 

  11. Sippl, M.: Recognition of errors in three-dimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics 17, 355–362 (1993)

    Article  CAS  Google Scholar 

  12. Wendoloski, J.J., Salemme, F.R.: PROBIT: a statistical approach to modeling proteins from partial coordinate data using substructure libraries. Journal of Molecular Graphics 10(2), 124–126 (1992)

    Article  CAS  PubMed  Google Scholar 

  13. Bowie, J.U., Eisenberg, D.: An Evolutionary Approach to Folding Small α-Helical Proteins that Uses Sequence Information and an Empirical Guiding Fitness Function. Proceedings of National Academy Sciences, USA 91(10), 4436–4440 (1994)

    Article  CAS  Google Scholar 

  14. Xia, Y., Huang, E.S., Levitt, M., Samudrala, R.: Ab initio construction of protein tertiary structures using a hierarchical approach. Journal of Molecular Biology 300(1), 171–185 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Kihara, D., Lu, H., Kolinski, A., Skolnick, J.: TOUCHSTONE: An ab initio protein structure prediction method that uses threading-based tertiary restraints. Proceedings of the National Academy of Sciences 98(18), 10125–10130 (2001)

    Article  CAS  Google Scholar 

  16. Zhang, Y., Kolinski, A., Skolnick, J.: TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophysical Journal 85(2), 1145–1164 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moult, J., Fidelis, K., Zemla, A., Hubbard, T.: Critical assessment of methods of protein structure prediction (CASP)-round V. Proteins: Structure, Function, and Genetics 53(S6), 334–339 (2003)

    Article  CAS  Google Scholar 

  18. Moult, J.: A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Current Opinion in Structure Biology (June 2005)

    Google Scholar 

  19. Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of Molecular Biology 268(1), 209–225 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Li, S.C., Bu, D., Xu, J., Li, M.: Fragment-hmm: A new approach to protein structure prediction. Protein Science, ps.036442.108+ (August 2008)

    Google Scholar 

  21. Feldman, H.J., Hogue, C.W.V.: Probabilistic sampling of protein conformations: New hope for brute force? Proteins: Structure, Function, and Genetics 46(1), 8–23 (2002)

    Article  CAS  Google Scholar 

  22. Hamelryck, T., Kent, J.T.T., Krogh, A.: Sampling Realistic Protein Conformations Using Local Structural Bias. PLoS Comput Biology 2(9) (September 2006)

    Google Scholar 

  23. Boomsma, W., Mardia, K.V., Taylor, C.C., Ferkinghoff-Borg, J., Krogh, A., Hamelryck, T.: A generative, probabilistic model of local protein structure. Proceedings of the National Academy of Sciences 105(26), 8932–8937 (2008)

    Article  CAS  Google Scholar 

  24. Zhao, F., Li, S., Sterner, B.W., Xu, J.: Discriminative learning for protein conformation sampling. Proteins: Structure, Function, and Bioinformatics 73(1), 228–240 (2008)

    Article  CAS  Google Scholar 

  25. Shen, M.Y., Sali, A.: Statistical potential for assessment and prediction of protein structures. Protein Science 15(11), 2507–2524 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morozov, A.V., Kortemme, T., Tsemekhman, K., Baker, D.: Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. Proceedings of National Academy Sciences 101(18), 6946–6951 (2004)

    Article  CAS  Google Scholar 

  27. Levitt, M.: A simplified representation of protein conformations for rapid simulation of protein folding. Journal of Molecular Biology 104, 59–107 (1976)

    Article  CAS  PubMed  Google Scholar 

  28. Kent, J.T.: The Fisher-Bingham Distribution on the Sphere. Journal of Royal Statistical Society 44, 71–80 (1982)

    Google Scholar 

  29. Holm, L., Sander, C.: Database algorithm for generating protein backbone and side-chain co-ordinates from a C alpha trace application to model building and detection of co-ordinate errors. Journal of Molecular Biology 218(1), 183–194 (1991)

    Article  CAS  PubMed  Google Scholar 

  30. Gront, D., Kmiecik, S., Kolinski, A.: Backbone building from quadrilaterals: A fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates. Journal of Computational Chemistry 28(9), 1593–1597 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. Maupetit, J., Gautier, R., Tufféry, P.: SABBAC: online structural alphabet-based protein backbone reconstruction from alpha-carbon trace. Nucleic Acids Researchearch 34(Webserver issue) (July 2006)

    Google Scholar 

  32. Branden, C.-I., Tooze, J.: Introduction to Protein Structure, 2nd edn. Garland Publishing (1999)

    Google Scholar 

  33. Wang, G., Dunbrack, R.L.: PISCES: a protein sequence culling server. Bioinformatics 19(12), 1589–1591 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Phan, X.-H., Nguyen, L.-M., Nguyen, C.-T.: FlexCRFs: Flexible Conditional Random Field Toolkit (2005), http://flexcrfs.sourceforge.net

  35. Fitzgerald, J.E., Jha, A.K., Colubri, A., Sosnick, T.R., Freed, K.F.: Reduced Cbeta statistical potentials can outperform all-atom potentials in decoy identification. Protein Science 16(10), 2123–2139 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colubri, A., Jha, A.K., Shen, M.Y., Sali, A., Berry, R.S., Sosnick, T.R., Freed, K.F.: Minimalist representations and the importance of nearest neighbor effects in protein folding simulations. Journal of Molecular Biology 363(4), 835–857 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Ooi, T., Oobatake, M., Nemethy, G., Scheraga, H.A.: Accessible Surface Areas as a Measure of the Thermodynamic Parameters of Hydration of Peptides. Proceedings of the National Academy of Sciences 84(10), 3086–3090 (1987)

    Article  CAS  Google Scholar 

  38. Fernández, A., Sosnick, T.R., Colubri, A.: Dynamics of hydrogen bond desolvation in protein folding. Journal of molecular biology 321(4), 659–675 (2002)

    Article  PubMed  Google Scholar 

  39. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley, Chichester (1991)

    Google Scholar 

  40. Zhang, Y., Skolnick, J.: TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research 33(7), 2302–2309 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, F., Peng, J., DeBartolo, J., Freed, K.F., Sosnick, T.R., Xu, J. (2009). A Probabilistic Graphical Model for Ab Initio Folding. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics