Detecting the Presence and Absence of Causal Relationships between Expression of Yeast Genes with Very Few Samples

  • Eun Yong Kang
  • Ilya Shpitser
  • Chun Ye
  • Eleazar Eskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5541)


Inference of biological networks from high-throughput data is a central problem in bioinformatics. Particularly powerful for network reconstruction is data collected by recent studies that contain both genetic variation information and gene expression profiles from genetically distinct strains of an organism. Various statistical approaches have been applied to these data to tease out the underlying biological networks that govern how individual genetic variation mediates gene expression and how genes regulate and interact with each other. Extracting meaningful causal relationships from these networks remains a challenging but important problem. In this paper we use causal inference techniques to infer the presence or absence of causal relationships between yeast gene expressions in the framework of graphical causal models. We evaluate our method using a well studied dataset consisting of both genetic variation information and gene expressions collected over yeast strains. Our predictions of causal regulators are consistent with previously known experimental evidence. In addition, our method can distinguish between direct and indirect effects of variation on a gene expression level.


Causal Model Conditional Independence Independence Test Causal Diagram Causal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markowetz, F., Spang, R.: Inferring cellular networks–a review. BMC Bioinformatics 8(suppl. 6), S5 (2007)CrossRefGoogle Scholar
  2. 2.
    Brem, R.B., Yvert, G., Clinton, R., Kruglyak, L.: Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    Brem, R., Kruglyak, L.: The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences 102, 1572–1577 (2005)CrossRefGoogle Scholar
  4. 4.
    Lee, S.I., Pe’er, D., Dudley, A.M., Church, G.M., Koller, D.: Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proceedings of the National Academy of Sciences 103, 14062–14067 (2006)CrossRefGoogle Scholar
  5. 5.
    Robinson, M., Grigull, J., Mohammad, N., Hughes, T.: Funspec: a web-based cluster interpreter for yeast. BMC Bioinformatics 3, 35 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ghazalpour, A., Doss, S., Zhang, B., Wang, S., Plaisier, C., Castellanos, R., Brozell, A., Schadt, E., Drake, T., Lusis, A., Horvath, S.: Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2 (2006)Google Scholar
  7. 7.
    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: From the cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102, 15545–15550 (2005)CrossRefGoogle Scholar
  8. 8.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology 7(3-4), 601–620 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from perturbed expression profiles (2001)Google Scholar
  10. 10.
    Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    Friedman, N.: Inferring Cellular Networks Using Probabilistic Graphical Models. Science’s STKE 303(5659), 799 (2004)Google Scholar
  12. 12.
    Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Pac. Symp. Biocomput., vol. 6, pp. 422–433 (2001)Google Scholar
  13. 13.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco (1988)Google Scholar
  14. 14.
    Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)Google Scholar
  15. 15.
    Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)Google Scholar
  16. 16.
    Suzuki, J.: A construction of bayesian networks from databases based on an mdl scheme. In: UAI 1993, pp. 266–273 (1993)Google Scholar
  17. 17.
    Lam, W., Bacchus, F.: Learning bayesian belief networks: An approach based on the MDL principle. Computational Intelligence 10(4) (1994)Google Scholar
  18. 18.
    Zhu, J., Zhang, B., Smith, E., Drees, B., Brem, R., Kruglyak, L., Bumgarner, R., Schadt, E.: Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics 40(7), 854 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bing, N., Hoeschele, I.: Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 170, 533–542 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kulp, D., Jagalur, M.: Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics 7, 125 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schadt, E.E., Lamb, J., Yang, X., Zhu, J., Edwards, S., GuhaThakurta, D., Sieberts, S.K., Monks, S., Reitman, M., Zhang, C., Lum, P.Y., Leonardson, A., Thieringer, R., Metzger, J.M., Yang, L., Castle, J., Zhu, H., Kash, S.F., Drake, T.A., Sachs, A., Lusis, A.J.: An integrative genomics approach to infer causal associations between gene expression and disease. Nat.Genet. 37, 710–717 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen, L., Emmert-Streib, F., Storey, J.: Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biology 8, R219 (2007)CrossRefGoogle Scholar
  23. 23.
    Yvert, G., Brem, R., Whittle, J., Akey, J., Foss, E., Smith, E., Mackelprang, R., Kruglyak, L.: Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genetics 35, 57–64 (2003)CrossRefPubMedGoogle Scholar
  24. 24.
    Jordan, M.I., Weiss, Y.: Graphical models: Probabilistic inference. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn., MIT Press, Cambridge (2002)Google Scholar
  25. 25.
    Pearl, J., Verma, T.S.: A theory of inferred causation. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Second International Conference, pp. 441–452 (1991)Google Scholar
  26. 26.
    Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, New York (1993)CrossRefGoogle Scholar
  27. 27.
    Verma, T.S., Pearl, J.: Equivalence and synthesis of causal models. Technical Report R-150, Department of Computer Science, University of California, Los Angeles (1990)Google Scholar
  28. 28.
    Storey, J., Tibshirani, R.: Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences 100, 9440–9445 (2003)CrossRefGoogle Scholar
  29. 29.
    Wright, S.: Correlation and causation. Journal of Agricultural Research 20, 557–585 (1921)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eun Yong Kang
    • 1
  • Ilya Shpitser
    • 2
  • Chun Ye
    • 3
  • Eleazar Eskin
    • 4
  1. 1.Department of Computer ScienceUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Department of EpidemiologyHarvard School of Public HealthBostonUSA
  3. 3.Bioinformatics ProgramUniversity of CaliforniaSan DiegoUSA
  4. 4.Department of Computer Science Department of Human GeneticsUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations