On the Relationship between DNA Periodicity and Local Chromatin Structure

  • Sheila M. Reynolds
  • Jeff A. Bilmes
  • William Stafford Noble
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5541)


DNA periodicity and its relationship to the formation of nucleosomes has been investigated extensively using autocorrelation and Fourier transform methods. We provide a precise treatment of the mathematical foundation for this type of analysis, and we apply the resulting method to quantify dinucleotide periodicity in several datasets. We begin by demonstrating, via simulation, the sensitivity of our method relative to previous methods. We then provide evidence of pervasive ~10 bp periodicity in S. cerevisiae, with stronger periodicity in sequences associated with positioned nucleosomes. In human, although repeat-masked sequences do not exhibit significant periodicity on average, we find that experimentally determined nucleosome positions show a periodicity of the AA dinucleotide similar to that found in S. cerevisiae. Furthermore, transcription start sites in the human genome are marked by a sharp drop in the 10 bp periodicity of the AA dinucleotide, while occupied CTCF sites are surrounded by a local increase.


DNA periodicity nucleosome dinucleotide chromatin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crick, F.H.C., Klug, A.: Kinky helix. Nature 255, 530–533 (1975)CrossRefPubMedGoogle Scholar
  2. 2.
    Trifonov, E.N., Sussman, J.L.: The pitch of chromatin DNA is reflected in its nucleotide sequence. Proceedings of the National Academy of Sciences of the United States of America 77, 3816–3820 (1980)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Herzel, H., Trifonov, E.N., Weiss, O., Grosse, I.: Interpreting correlations in biosequences. Physica A 249, 449–459 (1998)CrossRefGoogle Scholar
  4. 4.
    Satchwell, S.C., Drew, H.R., Travers, A.A.: Sequence periodicities in chicken nucleosome core DNA. Journal of Molecular Biology 191, 659–675 (1986)CrossRefPubMedGoogle Scholar
  5. 5.
    Drew, H.R., Travers, A.A.: DNA bending and its relation to nucleosome positioning. Journal of Molecular Biology 186, 773–790 (1985)CrossRefPubMedGoogle Scholar
  6. 6.
    Shrader, T., Crothers, D.: Artificial nucleosome positioning sequences. Proceedings of the National Academy of Sciences of the United States of America 86, 7418–7422 (1989)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Widom, J.: Short-range order in two eukaryotic genomes: relation to chromatin structure. Journal of Molecular Biology 259, 579–588 (1996)CrossRefPubMedGoogle Scholar
  8. 8.
    Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thȧström, A., Field, Y., Moore, I.K., Wang, J.Z., Widom, J.: A genomic code for nucleosome positioning. Nature 44, 772–778 (2006)CrossRefGoogle Scholar
  9. 9.
    Fire, A., Alcazar, R., Tan, F.: Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans. Genetics 173, 1259–1273 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Packer, M.J., Dauncey, M.P., Hunter, C.A.: Sequence-dependent DNA structure: dinucleotide conformational maps. Journal of Molecular Biology 295, 71–83 (2000)CrossRefPubMedGoogle Scholar
  11. 11.
    Packer, M.J., Dauncey, M.P., Hunter, C.A.: Sequence-dependent DNA structure: tetranucleotide conformational maps. Journal of Molecular Biology 295, 85–103 (2000)CrossRefPubMedGoogle Scholar
  12. 12.
    Beveridge, D.L., Dixit, S.B., Barreiro, G., Thayer, K.M.: Molecular dynamics simulations of DNA curvature and flexibility: helix phasing and premelting. Biopolymers 73, 380–403 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Gabrielian, A., Simoncsits, A., Pongor, S.: Distribution of bending propensity in DNA sequences. FEBS Letters 393, 125–140 (1996)Google Scholar
  14. 14.
    Bomble, Y.J., Case, D.A.: Multiscale modeling of nucleic acids: insights into DNA flexibility. Biopolymers 89, 722–731 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Travers, A.A.: The structural basis of DNA flexibility. Philosophical Transactions of the Royal Society of London. Series A Mathematical, Physical and Engineering Sciences. 362, 1423–1438 (2004)CrossRefGoogle Scholar
  16. 16.
    Thȧström, A., Lowary, P.T., Widlund, H.R., Cao, H., Kubista, M., Widom, J.: Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. Journal of Molecular Biology 288, 213–229 (1999)CrossRefPubMedGoogle Scholar
  17. 17.
    Bailey, K.A., Pereira, S.L., Widom, J., Reeve, J.N.: Archaeal histone selection of nucleosome positioning sequences and the procaryotic origin of histone-dependent genome evolution. Journal of Molecular Biology 303, 25–34 (2000)CrossRefPubMedGoogle Scholar
  18. 18.
    Holste, D., Grosse, I., Beirer, S., Schieg, P., Herzel, H.: Repeats and correlations in human DNA sequences. Physical Review E 67 (2003)Google Scholar
  19. 19.
    Hosid, S., Trifonov, E.N., Bolshoy, A.: Sequence periodicity of Escherichia coli is concentrated in intergenic regions. BMC Molecular Biology 5, 14 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schieg, P., Herzel, H.: Periodicities of 10-11 bp as indicators of the supercoiled state of genomic DNA. Journal of Molecular Biology 343, 891–901 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Oxford University Press, USA (2001)Google Scholar
  22. 22.
    Jenkins, G.M., Watts, D.: Spectral Analysis and Its Applications. Emerson-Adams Press, USA (1998)Google Scholar
  23. 23.
    Baldi, P., Brunak, S., Chauvin, Y., Englebrecht, J., Krogh, A.: Periodic sequence patterns in human exons. In: ISMB, pp. 30–38 (1995)Google Scholar
  24. 24.
    Baldi, P., Brunak, S., Chauvin, Y., Krogh, A.: Naturally occurring nucleosome positioning signals in human exons and introns. Journal of Molecular Biology 263, 503–510 (1996)CrossRefPubMedGoogle Scholar
  25. 25.
    Kharchenko, P.V., Woo, C.J., Tolstorukov, M.Y., Kingston, R.E., Park, P.J.: Nucleosome positioning in human HOX gene clusters. Genome Research 18, 1554–1561 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kornberg, R.: The location of nucleosomes in chromatin: specific or statistical. Nature 292, 579–580 (1981)CrossRefPubMedGoogle Scholar
  27. 27.
    Kornberg, R.D., Lorch, Y.: Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromasome. Cell 98, 285–294 (1999)CrossRefPubMedGoogle Scholar
  28. 28.
    Reynolds, S.M., Käll, L., Bilmes, J.A., Noble, W.S.: Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLoS Computational Biology 4, 11 (2008)CrossRefGoogle Scholar
  29. 29.
    Takasuka, T.E., Cioffi, A., Stein, A.: Sequence information encoded in DNA that influence long-range chromatin structure correlates with human chromosome functions. PLoS ONE 3, 7 (2008)CrossRefGoogle Scholar
  30. 30.
    Wang, Y.H.: Chromatin structure of repeating CTG/CAG and CGG/CCG sequences in human disease. Front Bioscience 122, 4731–4741 (2007)CrossRefGoogle Scholar
  31. 31.
    Albert, I., Mavrich, T.N., Tomsho, L.P., Qi, J., Zanton, S.J., Schuster, S.C., Pugh, B.F.: Translational and rotational settings of H2A. Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007)CrossRefPubMedGoogle Scholar
  32. 32.
    Mavrich, T.N., Ioshikhes, I.P., Venters, B.J., Jiang, C., Tomsho, L.P., Qi, J., Schuster, S.C., Albert, I., Pugh, B.F.: A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Research 18, 1073–1083 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Richmond, T.J., Davey, C.A.: The structure of DNA in the nucleosome core. Nature 423, 145–150 (2007)CrossRefGoogle Scholar
  34. 34.
    Tolstorukov, M.Y., Colasanti, A.V., McCandlish, D.M., Olson, W.K., Zhurkin, V.B.: A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning. Journal of Molecular Biology 371, 725–738 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    ENCODE Consortium: The ENCODE (ENcyclopedia Of DNA Elements) Project. Science. 306, 636–640 (2004)Google Scholar
  36. 36.
    Xie, X., Mikkelsen, T.S., Gnirke, A., Lindblad-Toh, K., Kellis, M., Lander, E.S.: Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proceedings of the National Academy of Sciences of the United States of America 104, 7145–7150 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fu, Y., Sinha, M., Peterson, C.L., Weng, Z.: The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genetics 4, 7 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sheila M. Reynolds
    • 1
  • Jeff A. Bilmes
    • 1
  • William Stafford Noble
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations