Lifting Prediction to Alignment of RNA Pseudoknots

  • Mathias Möhl
  • Sebastian Will
  • Rolf Backofen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5541)


Prediction and alignment of RNA pseudoknot structures are NP-hard. Nevertheless, several efficient prediction algorithms by dynamic programming have been proposed for restricted classes of pseudoknots. We present a general scheme that yields an efficient alignment algorithm for arbitrary such classes. Moreover, we show that such an alignment algorithm benefits from the class restriction in the same way as the corresponding structure prediction algorithm does. We look at five of these classes in greater detail. The time and space complexity of the alignment algorithm is increased by only a linear factor over the respective prediction algorithm. For four of the classes, no efficient alignment algorithms were known. For the fifth, most general class, we improve the previously best complexity of O(n 5 m 5) time to O(nm 6), where n and m denote sequence lengths. Finally, we apply our fastest algorithm with O(nm 4) time and O(nm 2) space to comparative de-novo pseudoknot prediction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Couzin, J.: Breakthrough of the year. Small RNAs make big splash. Science 298(5602), 2296–2297 (2002)CrossRefPubMedGoogle Scholar
  2. 2.
    Washietl, S., Hofacker, I.L., Lukasser, M., Huttenhofer, A., Stadler, P.F.: Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol. 23(11), 1383–1390 (2005)CrossRefPubMedGoogle Scholar
  3. 3.
    Staple, D.W., Butcher, S.E.: Pseudoknots: RNA structures with diverse functions. PLoS Biol. 3(6), e213 (2005)CrossRefGoogle Scholar
  4. 4.
    Xayaphoummine, A., Bucher, T., Thalmann, F., Isambert, H.: Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc. Natl. Acad. Sci. USA 100(26), 15310–15315 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lyngso, R.B., Pedersen, C.N.S.: Pseudoknots in RNA secondary structures. In: Proc. of the Fourth Annual International Conferences on Compututational Molecular Biology (RECOMB 2000). ACM Press, New York (2000) BRICS Report Series RS-00-1Google Scholar
  6. 6.
    Do, C.B., Woods, D.A., Batzoglou, S.: CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14), e90–e98 (2006)CrossRefGoogle Scholar
  7. 7.
    Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring non-coding RNA families and classes by means of genome-scale structure-based clustering. PLOS Computational Biology 3(4), e65 (2007)CrossRefGoogle Scholar
  8. 8.
    Siebert, S., Backofen, R.: MARNA: multiple alignment and consensus structure prediction of RNAs based on sequence structure comparisons. Bioinformatics 21(16), 3352–3359 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    Gorodkin, J., Heyer, L., Stormo, G.: Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res. 25(18), 3724–3732 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Havgaard, J.H., Torarinsson, E., Gorodkin, J.: Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix. PLoS Comput. Biol. 3(10), 1896–1908 (2007)CrossRefPubMedGoogle Scholar
  11. 11.
    Mathews, D.H., Turner, D.H.: Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. Journal of Molecular Biology 317(2), 191–203 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    Harmanci, A.O., Sharma, G., Mathews, D.H.: Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics 8, 130 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bauer, M., Klau, G.W., Reinert, K.: Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization. BMC Bioinformatics 8, 271 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. Journal of Molecular Biology 285(5), 2053–2068 (1999)CrossRefPubMedGoogle Scholar
  15. 15.
    Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoretical Computer Science 210, 277–303 (1999)CrossRefGoogle Scholar
  16. 16.
    Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)CrossRefGoogle Scholar
  17. 17.
    Deogun, J.S., Donis, R., Komina, O., Ma, F.: RNA secondary structure prediction with simple pseudoknots. In: APBC 2004: Proceedings of the second conference on Asia-Pacific bioinformatics, Darlinghurst, pp. 239–246. Australian Computer Society, Inc., Australia (2004)Google Scholar
  18. 18.
    Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24(13), 1664–1677 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
    Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Evans, P.A.: Finding common RNA pseudoknot structures in polynomial time. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 223–232. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33(Database Issue), D121–D124 (2005)CrossRefGoogle Scholar
  22. 22.
    Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. Journal of Computational Biology 9(2), 371–388 (2002)CrossRefPubMedGoogle Scholar
  23. 23.
    Washietl, S., Hofacker, I.L., Stadler, P.F.: Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. USA 102(7), 2454–2459 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Missal, K., Rose, D., Stadler, P.F.: Non-coding RNAs in Ciona intestinalis. Bioinformatics 21(suppl. 2), ii77–ii78 (2005)Google Scholar
  25. 25.
    Evans, P.A.: Finding common subsequences with arcs and pseudoknots. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 270–280. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Möhl, M., Will, S., Backofen, R.: Fixed parameter tractable alignment of RNA structures including arbitrary pseudoknots. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 69–81. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatshefte Chemie 125, 167–188 (1994)CrossRefGoogle Scholar
  29. 29.
    Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theoretical Computer Science 320(1), 35–50 (2004)CrossRefGoogle Scholar
  30. 30.
    Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R.: Rfam: an RNA family database. Nucleic Acids Research 31(1), 439–441 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Siebert, S., Backofen, R.: Methods for multiple alignment and consensus structure prediction of RNAs implemented in MARNA. Methods Mol. Biol. 395, 489–502 (2007)CrossRefPubMedGoogle Scholar
  32. 32.
    Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302(1), 205–217 (2000)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mathias Möhl
    • 1
  • Sebastian Will
    • 2
  • Rolf Backofen
    • 2
  1. 1.Programming Systems LabSaarland UniversitySaarbrückenGermany
  2. 2.Bioinformatics, Institute of Computer ScienceAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations