Spatial Clustering of Multivariate Genomic and Epigenomic Information

  • Rami Jaschek
  • Amos Tanay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5541)


The combination of fully sequence genomes and new technologies for high density arrays and ultra-rapid sequencing enables the mapping of gene-regulatory and epigenetics marks on a global scale. This new experimental methodology was recently applied to map multiple histone marks and genomic factors, characterizing patterns of genome organization and discovering interactions among processes of epigenetic reprogramming during cellular differentiation. The new data poses a significant computational challenge in both size and statistical heterogeneity. Understanding it collectively and without bias remains an open problem. Here we introduce spatial clustering - a new unsupervised clustering methodology for dissection of large, multi-track genomic and epigenomic data sets into a spatially organized set of distinct combinatorial behaviors. We develop a probabilistic algorithm that finds spatial clustering solutions by learning an HMM model and inferring the most likely genomic layout of clusters. Application of our methods to meta-analysis of combined ChIP-seq and ChIP-chip epigenomic datasets in mouse and human reveals known and novel patterns of local co-occurrence among histone modification and related factors. Moreover, the model weaves together these local patterns into a coherent global model that reflects the higher level organization of the epigenome. Spatial clustering constitutes a powerful and scalable analysis methodology for dissecting even larger scale genomic dataset that will soon become available.


Embryonic Stem Cell Transcription Start Site Cluster State Spatial Cluster Histone Mark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barski, A., et al.: High-resolution profiling of histone methylations in the human genome. Cell 129(4), 823–837 (2007)CrossRefPubMedGoogle Scholar
  2. 2.
    Li, X.Y., et al.: Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol. 6(2), e27 (2008)CrossRefGoogle Scholar
  3. 3.
    Meissner, A., et al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205), 766–770 (2008)PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mikkelsen, T.S., et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153), 553–560 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang, Z., et al.: Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40(7), 897–903 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu, C.L., et al.: Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 3(10), e328 (2005)CrossRefGoogle Scholar
  7. 7.
    Guenther, M.G., et al.: A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1), 77–88 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gal-Yam, E.N., et al.: Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc. Natl. Acad. Sci. USA 105(35), 12979–12984 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kondo, Y., et al.: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet. 40(6), 741–750 (2008)CrossRefPubMedGoogle Scholar
  10. 10.
    Moving AHEAD with an international human epigenome project. Nature 454(7205), 711–715 (2008)Google Scholar
  11. 11.
    Fu, Y., et al.: The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 4(7), e1000138 (2008)CrossRefGoogle Scholar
  12. 12.
    Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3-4), 281–297 (1999)CrossRefPubMedGoogle Scholar
  13. 13.
    Eisen, M.B., et al.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95(25), 14863–14868 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tanay, A., et al.: Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc. Natl. Acad. Sci. USA 101(9), 2981–2986 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Segal, E., et al.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Series in Statistics, p. 533. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Kuznetsov, V.A., et al.: Computational analysis and modeling of genome-scale avidity distribution of transcription factor binding sites in chip-pet experiments. Genome Inform. 19, 83–94 (2007)PubMedGoogle Scholar
  18. 18.
    Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  19. 19.
    Hubbard, T., et al.: The Ensembl genome database project. Nucleic. Acids Res. 30(1), 38–41 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kent, W.J., et al.: The human genome browser at UCSC. Genome Res. 12(6), 996–1006 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guelen, L., et al.: Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197), 948–951 (2008)CrossRefPubMedGoogle Scholar
  22. 22.
    Kim, T.H., et al.: Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128(6), 1231–1245 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schuettengruber, B., et al.: Genome regulation by Polycomb and trithorax proteins. Cell 128(4), 735–745 (2007)CrossRefPubMedGoogle Scholar
  24. 24.
    Vakoc, C.R., et al.: Profile of histone lysine methylation across transcribed mammalian chromatin. Mol. Cell. Biol. 26(24), 9185–9195 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ooga, M., et al.: Changes in H3K79 methylation during preimplantation development in mice. Biol. Reprod. 78(3), 413–424 (2008)CrossRefPubMedGoogle Scholar
  26. 26.
    Hon, G., Ren, B., Wang, W.: ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLoS Comput. Biol. 4(10), e1000201 (2008)CrossRefGoogle Scholar
  27. 27.
    Boyer, L.A., et al.: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091), 349–353 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    Lee, T.I., et al.: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125(2), 301–313 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bernstein, B.E., et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2), 315–326 (2006)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rami Jaschek
    • 1
  • Amos Tanay
    • 1
  1. 1.Department of Computer Science and Applied MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations