Skip to main content

An Online Approach for Mining Collective Behaviors from Molecular Dynamics Simulations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

Collective behavior involving distally separate regions in a protein is known to widely affect its function. In this paper, we present an online approach to study and characterize collective behavior in proteins as molecular dynamics simulations progress. Our representation of MD simulations as a stream of continuously evolving data allows us to succinctly capture spatial and temporal dependencies that may exist and analyze them efficiently using data mining techniques. By using multi-way analysis we identify (a) parts of the protein that are dynamically coupled, (b) constrained residues/ hinge sites that may potentially affect protein function and (c) time-points during the simulation where significant deviation in collective behavior occurred. We demonstrate the applicability of this method on two different protein simulations for barnase and cyclophilin A. For both these proteins we were able to identify constrained/ flexible regions, showing good agreement with experimental results and prior computational work. Similarly, for the two simulations, we were able to identify time windows where there were significant structural deviations. Of these time-windows, for both proteins, over 70% show collective displacements in two or more functionally relevant regions. Taken together, our results indicate that multi-way analysis techniques can be used to analyze protein dynamics and may be an attractive means to automatically track and monitor molecular dynamics simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, E., Aykut-Bingol, C., Bingol, H., Bro, R., Yener, B.: Multiway analysis of epilepsy tensors. Bioinformatics 23(13), i10–i18 (2007)

    Article  Google Scholar 

  2. Agarwal, P.K.: Cis/trans isomerization in hiv-1 capsid protein catalyzed by cyclophilin a: Insights from computational and theoretical studies. Proteins: Struct., Funct., Bioinformatics 56, 449–463 (2004)

    Article  CAS  Google Scholar 

  3. Agarwal, P.K.: Enzymes: An integrated view of structure, dynamics and function. Microbial Cell Factories 5 (2006)

    Google Scholar 

  4. Agarwal, P.K., Billeter, S.R., Rajagopalan, P.T.R., Hammes-Schiffer, S., Benkovic, S.J.: Network of coupled promoting motions in enzyme catalysis. Proc. Natl. Acad. Sci. USA 99, 2794–2799 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Agarwal, P.K., Geist, A., Gorin, A.: Protein dynamics and enzymatic catalysis: Investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin a. Biochemistry 43(33), 10605–10618 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Transactions on Mathematical Software 32(4), 635–653 (2006)

    Article  Google Scholar 

  8. Bader, B.W., Kolda, T.G.: Efficient MATLAB computations with sparse and factored tensors. SIAM Journal on Scientific Computing 30(1), 205–231 (2007)

    Article  Google Scholar 

  9. Bahar, I., Atilgan, A.R., Demirel, M.C., Erman, B.: Vibrational dynamics of folded proteins. significance of slow and fast modes in relation to function and stability. Phys. Rev. Lett. 80, 2733–2736 (1998)

    Article  CAS  Google Scholar 

  10. Bahar, I., Cui, Q.: Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems. Mathematical and Computational Biology Series. Chapman and Hall/ CRC, New York (2003)

    Google Scholar 

  11. Bahar, I., Rader, A.J.: Coarse grained normal mode analysis in structural biology. Cur. Op. Struct. Biol. 15, 1–7 (2005)

    Article  Google Scholar 

  12. Beazley, D.M., Lomdahl, P.S.: Lightweight computational steering of very large scale molecular dynamics simulations. In: Supercomputing 1996 proceedings of the 1996 ACM/IEEE conference on Supercomputing (CDROM), Washington, DC, USA, p. 50. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  13. Berendsen, H.J.C., Hayward, S.: Collective protein dynamics in relation to function. Current Opinion in Structural Biology 10(2), 165–169 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research 28, 235–242 (2002)

    Article  Google Scholar 

  15. Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E.: Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC Conference, p. 43 (2006)

    Google Scholar 

  16. Chodera, J.D., Singhal, N., Pander, V.S., Dill, K.A., Swope, W.C.: Automatic discovery of metastable states for the construction of markov models of macromolecular conformational dynamics. J. Chem. Phys. 126, 155101 (2007)

    Article  PubMed  Google Scholar 

  17. DeLano, W.L.: The pymol molecular graphics system (2003)

    Google Scholar 

  18. Eisenmesser, E.Z., Bosco, D.A., Akke, M., Kern, D.: Enzyme dynamics during catalysis. Science 295(5559), 1520–1523 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Fersht, A.R., Daggett, V.: Protein folding and unfolding at atomic resolution. Cell 108(4), 573–582 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Fersht, A.R., Matouschek, A., Sancho, J., Serrano, L., Vuilleumier, S.: Pathway of protein folding. Faraday Discuss 93, 183–193 (1992)

    Article  CAS  Google Scholar 

  21. Fersht, A.R.: Protein folding and stability: the pathway of folding of barnase. FEBS Letters 325(1-2), 5–16 (1993)

    Article  CAS  PubMed  Google Scholar 

  22. Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucl. Acids Res. 26(18), 4280–4290 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, W., Eisenhauer, G., Kraemer, E., Schwan, K., Stasko, J., Vetter, J., Mallavarupu, N.: Falcon: on-line monitoring and steering of large-scale parallel programs. In: Symposium on the Frontiers of Massively Parallel Processing, p. 422 (1995)

    Google Scholar 

  24. Gussio, R., Pattabiraman, N., Kellogg, G.E., Zaharevitz, D.W.: Use of 3d qsar methodology for data mining the national cancer institute repository of small molecules: Application to hiv-1 reverse transcriptase inhibition. Methods 14, 255–263 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. App. Stat. 28(1), 100–108 (1979)

    Article  Google Scholar 

  26. Hayward, S., Go, N.: Collective variable description of native protein dynamics. Annual Review of Physical Chemistry 46(1), 223–250 (1995)

    Article  CAS  PubMed  Google Scholar 

  27. Hespenheide, B.M., Rader, A.J., Thorpe, M.F., Kuhn, L.A.: Identifying protein folding cores: observing the evolution of rigid and flexible regions during unfolding. J. Mol. Graph. and Model. 21, 195–207 (2002)

    Article  CAS  Google Scholar 

  28. Jacobs, D.J., Rader, A.J., Kuhn, L.A., Thorpe, M.F.: Protein flexibility predictions using graph theory. Proteins: Struct., Funct., Genet. 44(2), 150–165 (2001)

    Article  CAS  Google Scholar 

  29. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)

    Google Scholar 

  30. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. Karplus, M., Kushick, J.N.: Method for estimating the configurational entropy of macromolecules. Macromolecules 14(2), 325–332 (1981)

    Article  CAS  Google Scholar 

  32. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. Technical report, Sandia National Laboratories (2007)

    Google Scholar 

  33. Lange, O.F., Grubmuller, H.: Full correlation analysis of conformational protein dynamics. Proteins: Struct., Funct. and Bioinformatics 70, 1294–1312 (2008)

    Article  CAS  Google Scholar 

  34. Lenaerts, T., Ferkinghoff-Borg, J., Stricher, F., Serrano, L., Schymkowitz, J.W.H., Rousseau, F.: Quantifying information transfer by protein domains: Analysis of the fyn sh2 domain structure. BMC Struct. Biol. 8, 43 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Malmodin, D., Billeter, M.: Multiway decomposition of nmr spectra with coupled evolution periods. J. Am. Chem. Soc. 127(39), 13486–13487 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. Mamonova, T., Hespenheide, B., Straub, R., Thorpe, M.F., Kurnikova, M.: Protein flexibility using constraints from molecular dynamics simulations. Phys. Biol. 2(4), S137–S147 (2005)

    Article  Google Scholar 

  37. Nolde, S.B., Arseniev, A.S., Yu, V., Billeter, M.: Essential domain motions in barnase revealed by md simulations. Proteins: Struct., Funct. and Bioinformatics 46(3), 250–258 (2003)

    Article  Google Scholar 

  38. Shao, J., Tanner, S.W., Thompson, N., Cheatham, T.E.: Clustering molecular dynamics trajectories: 1. characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation 3(6), 2312–2334 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis: Applications in the Chemical Sciences. J. Wiley and Sons, Ltd., Chichester (2004)

    Book  Google Scholar 

  40. Staykova, D., Fredriksson, J., Bermel, W., Billeter, M.A: ssignment of protein nmr spectra based on projections, multi-way decomposition and a fast correlation approach. Journal of Biomolecular NMR (2008)

    Google Scholar 

  41. Suel, G.M., Lockless, S.W., Wall, M.A., Ranganathan, R.: Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003)

    Article  PubMed  Google Scholar 

  42. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: Dynamic tensor analysis (2006)

    Google Scholar 

  43. Tao, D., Li, X., Wu, X., Hu, W., Stephen, J.M.: Supervised tensor learning. Knowledge and Information Systems 13, 42 (2007)

    Article  Google Scholar 

  44. Whiteley, W.: Rigidity of Molecular structures: generic and geometric analysis. In: Rigidity Theory and Applications. Kluwer Academic/ Plenum, New York (1999)

    Google Scholar 

  45. Yanagawa, H., Yoshida, K., Torigoe, C., Park, J.S., Sato, K., Shirai, T., Go, M.: Protein anatomy: functional roles of barnase module. J. Biol. Chem. 268(8), 5861–5865 (1993)

    CAS  PubMed  Google Scholar 

  46. Yener, B., Acar, E., Aguis, P., Bennett, K., Vandenberg, S., Plopper, G.: Multiway modeling and analysis in stem cell systems biology. BMC Systems Biology 2(1), 63 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zavodszky, M.I., Lei, M., Thorpe, M.F., Day, A.R., Kuhn, L.A.: Modeling correlated main-chain motions in proteins for flexible molecular recognition. Proteins: Struct. Funct. and Bioinformatics 57(2), 243–261 (2004)

    Article  CAS  Google Scholar 

  48. Zhuravleva, A., Korzhnev, D.M., Nolde, S.B., Kay, L.E., Arseniev, A.S., Billeter, M., Orekhov, V.Y.: Propagation of dynamic changes in barnase upon binding of barstar: An nmr and computational study. Journal of Molecular Biology 367(4), 1079–1092 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramanathan, A., Agarwal, P.K., Kurnikova, M., Langmead, C.J. (2009). An Online Approach for Mining Collective Behaviors from Molecular Dynamics Simulations. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics