Skip to main content

Pea Cultivation in Saline Soils: Influence of Nitrogen Nutrition

  • Chapter
  • First Online:
Microbial Strategies for Crop Improvement

Abstract

Salinity is one of the most important abiotic factors limiting plant growth and productivity. This is especially acute in arid and semiarid regions of the world. In this chapter, attention is paid to evaluate the influence of different forms of nitrogen on the tolerance and the yield of pea (Pisum sativum L.) plants cultivated under different saline conditions. Results show that the nitrogen form influenced pea growth, yield and ionic content, both under the presence and absence of salinity. Under nonsaline conditions, the highest growth and yields were obtained by NO3NH4, whereas under salinity, NO 3 displayed the highest values. The inoculation with a salt-tolerant strain allowed the nodule formation process to remain unaffected by salt. Nevertheless, these plants had lower yields than NO 3 -fed plants, although similar values to NH4 +-supplemented plants, indicating that, by relying solely on biological N2 fixation or NH4 + fertilization, pea yields under saline conditions will be compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Alla MH, Vuong TD, Harper JE (1998) Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Sci 38:72–77

    Article  Google Scholar 

  • Atta S, Maltese S, Cousin R (2004) Protein content and dry weight of seeds from various pea genotypes. Agronomie 24:257–266

    Article  CAS  Google Scholar 

  • Bekki A, Trinchant JC, Rigaut J (1987) Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroides under sodium chloride stress. Physiol Plantarum 71:61–67

    Article  CAS  Google Scholar 

  • Below FE (1995) Nitrogen metabolism and crop productivity. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 275–301

    Google Scholar 

  • Binzel ML, Hess FD, Bressan RA, Hasegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86:607–614

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Su H, Shen B (1999) Molecular mechanisms of salinity tolerance. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, Drought, heat and salt stress in higher plants. University of Arizona, Arizona, pp 29–60

    Google Scholar 

  • Botsford JL, Lewis TA (1990) Osmoregulation in Rhizobium meliloti: production of glutamic acid in response to osmotic stress. Appl Environ Microbiol 56:488–494

    CAS  PubMed  Google Scholar 

  • Bourgeais-Chaillou P, Alfocea FP, Guerrier G (1992) Comparative effects of N-sources on growth and physiological responses of soybean exposed to NaCl-stress. J Exp Bot 43:1225–1233

    Article  CAS  Google Scholar 

  • Bray CM (1983) Nitrogen metabolism in plants. Longman, New York

    Google Scholar 

  • Brewing NJ, Ambrose MJ, Downie JA (1993) Root nodules, Rhizobium and nitrogen fixation. In: Casey R, Davies DR (eds) Peas: genetics, molecular biology and biothechnology. Cab International, Wallingford, pp 237–290

    Google Scholar 

  • Caldwell JH, Van Brunt J, Harold FM (1986) Calcium-dependent anion channel in the water mold, Blastocladiella emersonii. J Membrane Biol 39:85–97

    Article  Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1994) The effect of salinity, N fixation and assimilation in Vicia faba. J Exp Bot 279:1483–1488

    Article  Google Scholar 

  • Cordovilla MD, Ligero F, Lluch C (1996) Growth and nitrogen assimilation in nodules in response to nitrate levels in Vicia faba under salt stress. J Exp Bot 47:203–210

    Article  CAS  Google Scholar 

  • Cordovilla MD, Ligero F, Lluch C (1999a) Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L.). Appl Soil Ecol 11:1–7

    Article  Google Scholar 

  • Cordovilla MD, Berrido SI, Ligero F, Lluch C (1999b) Rhizobium strain effects on the growth and nitrogen assimilation in Pisum sativum and Vicia faba plant growth under salt stress. Plant Sci 140:127–136

    Article  Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1999c) Effects of NaCl on nitrogen fixation and assimilation of inoculated and KNO3 fertilized of Vicia faba L. and Pisum sativum L. Plant Sci 140:127–136

    Article  Google Scholar 

  • Craig GF, Atkins CA, Bell DT (1991) Effect of salinity on growth of four strains of Rhizobium and their infectivity and effectiveness on two species of Acacia. Plant Soil 133:253–262

    Article  CAS  Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1993) Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress. Physiol Plantarum 89:824–829

    Article  CAS  Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effect of salt stress on growth and nitrogen fixation by pea, faba bean, common bean and soybean plants. Soil Biol Biochem 26:371–376

    Article  CAS  Google Scholar 

  • Delgado MJ, Garrido JM, Ligero F, LIuch C (2006) Nitrogen fixation and carbon metabolism by nodules and bacteroids of pea plants under sodium chloride stress. Physiologica plantarum 89:824–829

    Article  Google Scholar 

  • Doré T, Meynard JM, Sebillotte M (1998) The role of grain number, nitrogen nutrition and stem number in limiting pea crop (Pisum sativum) yields under agricultural conditions. Eur J Agron 8:29–37

    Article  Google Scholar 

  • Dubey RS (1994) Protein synthesis by plants under stressful conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 277–299

    Google Scholar 

  • Dubey RS, Runi M (1987) Proteases and proteins in germinating rice seeds in relation to salt tolerance. Plant Physiol Biochem 12:9–15

    Google Scholar 

  • Elsheikh EAE, Wood M (1990) Effect of salinity on growth, nodulation and nitrogen yield of chickpea (Cicer arietinum L.). J Exp Bot 231:1263–1269

    Article  Google Scholar 

  • Elsheikh EAE, Wood M (1995) Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-tolerant bradyrhizobia in saline soil. Soil Biol Biochem 27:657–661

    Article  CAS  Google Scholar 

  • Feigin A (1990) Interactive effects of salinity and ammonium/nitrate ratio on growth and chemical composition of melon plants. J Plant Nutr 13:1257–1269

    Article  CAS  Google Scholar 

  • Felle H (1994) The H+/Cl symporter in root-hair cells of Sinapis alba. An electrophysiological study using ion-selective microelectrodes. Plant Physiol 106:1131–1136

    CAS  PubMed  Google Scholar 

  • Figueira EMDAP, Caldeira GCN (2005) Effect of nitrogen nutrition on salt tolerance of Pisum sativum during vegetative growth. J Plant Nutr Soil Sci 168:359–363

    Article  CAS  Google Scholar 

  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669–696

    Article  CAS  PubMed  Google Scholar 

  • Gazzarrini S, Lejay T, Gojon A, Ninnemann O, Frommer WB, Von Wiren N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  CAS  PubMed  Google Scholar 

  • Georgiev GI, Atkins CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism, export and diffusive conductance of cowpea root nodules. Symbiosis 15:239–255

    Google Scholar 

  • Gessler A, Schneider S, Von Sengbusch D, Weber P, Hanemann U (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138:275–285

    Article  CAS  Google Scholar 

  • Gibson TS, Speirs J, Brady CJ (1984) Salt tolerance in the plants. II. In vivo translaction of m-RNAs from salt-tolerant and salt-sensitive plants on wheat germ ribosomes: responses to ions and compatible solutes. Plant Cell Environ 7:579–587

    CAS  Google Scholar 

  • Glikey JC, Staehelin LA (1989) A new organelle related to osmoregulation in ultrarapidly frozen Pelvetia embryos. Planta 178:425–435

    Article  Google Scholar 

  • Grattan SR, Grieve CM (1994) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 203–226

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophyes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Grossman A, Takahasi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Physiol Plant Mol Biol 52:163–210

    Article  CAS  PubMed  Google Scholar 

  • Hajibagheri MA, Harvey DMR, Flowers TJ (1987) Quantitative ion distribution within root cells salt-sensitive and salt-tolerant maize varieties. New Phytol 105:367–379

    Article  CAS  Google Scholar 

  • Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect Plant Ecol Evol Syst 1:92–120

    Article  Google Scholar 

  • Jackson LE, Martin Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363

    Article  CAS  PubMed  Google Scholar 

  • Joshi S (1987) Effect of soil salinity on nitrogen metabolism in Cajanus cajan L. Indian J Plant Physiol 30:223–231

    CAS  Google Scholar 

  • Läuchli A (1984) Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. In: Staples R, Toenniessen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 171–187

    Google Scholar 

  • Läuchli A, Wieneke J (1979) Studies on growth and distribution of Na+, K+ e Cl in soybean varieties differing in salt tolerance. Z Pflanzenk Pflanzens 142:3–13

    Google Scholar 

  • Lauter DJ, Munns DN (1986) Salt resistance of chickpea genotypes in solutions salinised with NaCl and Na2SO4. Plant Soil 95:271–279

    Article  CAS  Google Scholar 

  • Lee TD, Tjoelker MG, Reich PB, Russelle MP (2003) Contrasting growth response of an N2-fixing and nonfixing forb to elevated CO2: dependence on soil N supply. Plant Soil 255:475–486

    Article  CAS  Google Scholar 

  • Leidi EO, Sliberbush M, Soares MIM, Lips SH (1992) Salinity and nitrogen nutrition studies on peanut and cotton plants. J Plant Nutr 15:591–604

    Article  Google Scholar 

  • Leigh RA, Wyn-Jones RG (1984) A hypothesis relating critical potassium concentration for growth to the distribution and functions of this ion in the plant cell. New Phytol 97:1–13

    Article  CAS  Google Scholar 

  • Lewis OAM, Leidi EO, Lips SH (1989) Effect of nitrogen source on growth response to salinity stress in maize and wheat. New Phytol 111:155–160

    Article  CAS  Google Scholar 

  • Lovell PH (1977) Correlative influences in seedling growth. In: Sutcliffe JF, Pate JS (eds) The physiology of the garden pea. Academic, London, pp 265–290

    Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance – current assessment. Am Soc Civil Eng 103:115–134

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Martínez V, Cerdá A (1989) Influence of N source on rate of Cl, N, Na+, and K+ uptake by cucumber seedlings grown in saline conditions. J Plant Nutr 12:971–983

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Pate JS, Flinn AM (1977) Fruit and seed development. In: Sutcliffe JF, Pate JS (eds) The physiology of the garden pea. Academic, London, pp 431–468

    Google Scholar 

  • Pereira SIA, Lima AIG, Figueira EMAP (2008) Rhizobium leguminosarum isolated from agricultural ecosystems subjected to different climatic influences: the relation between genetic diversity, salt tolerance and nodulation efficiency. In: Liu TX (ed) Soil ecology research development. Nova Science, New York, pp 247–263

    Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–361

    Article  Google Scholar 

  • Robson AD, Bottomley PJ (1991) Limitations in the use of legumes in agriculture and forestry. In: Dilworth MJ, Glenn AR (eds) Biology and biochemistry of nitrogen fixation. Elsevier, Amesterdam, pp 320–349

    Google Scholar 

  • Rogers ME, Noble CL, Halloran GM, Nicolas ME (1997) Selecting for salt tolerance in white clover (Tripolium repens): chloride ion exclusion and its heritability. New Phytol 135:645–654

    Article  CAS  Google Scholar 

  • Salehi M, Salehi F, Poustini K, Heidari-Sharifabad H (2008) The effect of salinity on the nitrogen fixation in 4 cultivars of Medicago sativa L. in the seedling emergence stage. Res J Agric Biol Sci 4:413–415

    CAS  Google Scholar 

  • Sanders D (1980) The mechanism of Cl transport at the plasma-membrane of Chara corallina. I Cotransport with H+. J Membr Biol 53:129–141

    Article  CAS  Google Scholar 

  • Serraj R, Roy G, Drevon JJ (1994) Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen diffusion. Physiol Plantarum 91:161–168

    Article  CAS  Google Scholar 

  • Siddiqi MY, Malhotra B, Min XJ, Glass ADM (2002) Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. J Plant Nutr Soil Sci 165:191–197

    Article  CAS  Google Scholar 

  • Silberbush M, Lips SH (1991a) Potassium, nitrogen, ammonium/nitrate ratio, and sodium chloride effects on wheat growth. I. Shoot and root growth and mineral composition. J Plant Nutr 14:751–764

    Article  CAS  Google Scholar 

  • Silberbush M, Lips SH (1991b) Potassium, nitrogen, ammonium/nitrate ratio, and sodium chloride effects on wheat growth. II. Tillering and grain yield. J Plant Nutr 14:765–773

    Article  CAS  Google Scholar 

  • Singleton PW, Bholool BB (1983) Effect of salinity on functional components of the soybean-Rhizobium japonicum symbiosis. Crop Sci 23:451–460

    Google Scholar 

  • Singleton PW, El Swaify SA, Bohlool BB (1982) Effect of salinity on Rhizobium growth and survival. Appl Environ Microbiol 44:884–890

    CAS  PubMed  Google Scholar 

  • Smart DR, Bloom AJ (1998) Investigations of ion absorption during NH4 + exposure. I. Relationship between H+ efflux and NO3 absorption. J Exp Bot 49:95–100

    Article  CAS  Google Scholar 

  • Sprent JI, Zahran HH (1988) Infection, development and functioning of nodules under drought and salinity. In: Beck DP, Materon LA (eds) Nitrogen fixation by legumes in Mediterranean agriculture. Martinus Nijhoff, Dordrecht, pp 145–151

    Google Scholar 

  • Subbarao GV, Johansen C (1994) Strategies and scope for improving salinity tolerance in crop plants. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 559–579

    Google Scholar 

  • Subbarao GV, Johansen C, Jana MK, Kumar Rao JFDK (1990) Effects of sodium/ calcium ratio in modifying salinity response of pigeonpea (Cajanus cajan). J Plant Physiol 136:439–443

    CAS  Google Scholar 

  • Tawfik KM (2008) Evaluating the use of rhizobacterin on cowpea plants grown under salt stress. Res J Agric Biol Sci 4:26–33

    CAS  Google Scholar 

  • Tu JC (1981) Effect of salinity on Rhizobium-root-hair interaction, nodulation and growth of soybean. Can J Plant Sci 61:231–239

    Article  Google Scholar 

  • Tyerman SD (1992) Anion channels in plants. Annu Rev Plant Physiol Plant Mol Biol 43:351–373

    Article  CAS  Google Scholar 

  • Velagaleti RR, Schweitzer SM (1994) General effects of salt stress on growth and symbiotic nitrogen fixation in soybean. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 461–471

    Google Scholar 

  • Wahab AMA, Zahran HH (1981) Effects of salt stress in the nitrogenase activity and growth of four legumes. Biol Plant 23:16–23

    Article  CAS  Google Scholar 

  • Ward JM (1997) Patch-clamping and other molecular approaches for the study of plasma membrane transporters demystified. Plant Physiol 114:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Miller AJ (2001) Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu Rev Plant Physiol Plant Mol Biol 52:659–688

    Article  CAS  PubMed  Google Scholar 

  • Yeo AR (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–926

    Article  CAS  Google Scholar 

  • Zahran HH (1991) Conditions for successful Rhizobium-legume symbiosis in saline environments. Biol Fertil Soils 12:73–80

    Article  Google Scholar 

  • Zahran HH, Rsanen LA, Karsisto M, Lindstrom K (1994) Alteration of lipopolysaccharide and protein profiles in SDS-PAGE of rhizobia by osmotic and heat stress. World J. Microbiol. Biotechnol. 10:100–105

    Google Scholar 

  • Zhu JK (2002) Salt and drought signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Georgina Hodge for her help and suggestions. This work was supported by the Centre for Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etelvina Figueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Figueira, E. (2009). Pea Cultivation in Saline Soils: Influence of Nitrogen Nutrition. In: Khan, M., Zaidi, A., Musarrat, J. (eds) Microbial Strategies for Crop Improvement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01979-1_13

Download citation

Publish with us

Policies and ethics