Skip to main content

The Use of Microorganisms to Facilitate the Growth of Plants in Saline Soils

  • Chapter
  • First Online:
Microbial Strategies for Crop Improvement

Abstract

Worldwide, salinity is one of the most important abiotic stresses that limits crop growth and productivity. Ion imbalance and hyperosmotic stress in plants caused by high concentrations of salt often lead to oxidative stress conditions for plants. Soil salinization may be due to natural causes, and is common in the hot and dry regions of the world, or it may be a consequence of inadequate irrigation management practices. It has been estimated that around 20% of the world’s cultivated lands and up to half of all irrigated lands are affected by high salinity. Moreover, at the present time, there is more arable land being lost through salinity than is gained through the clearing of forests. In this chapter, the ability of plant beneficial microorganisms, notably plant growth-promoting (PGP) bacteria and mycorrhizae, to facilitate plant growth in the presence of salt is reviewed and discussed. Particular attention is paid to the development of a fundamental understanding of precisely how these microorganisms enable plants to proliferate in the presence of otherwise inhibitory levels of salt. A better understanding of these mechanisms is likely to lead to the development of simple and practical approaches for dealing with this problem in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic, New York

    Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hort 109:1–7

    Google Scholar 

  • Allen EB, Cunningham GL (1983) Effects of vesicular arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytologist 93: 227–236

    Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    CAS  PubMed  Google Scholar 

  • Awad AS, Edwards DG, Campbell LC (1990) Phosphorus enhancement of salt tolerance of tomato. Crop Sci 30:123–128

    Google Scholar 

  • Azcón R, Atrash EEI (1997) Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 fixation in Medicago sativa at four salinity levels. Biol Fertil Soil 24:81–86

    Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1998) Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plant 104:195–202

    CAS  Google Scholar 

  • Bacilio M, Rodriguez H, Moreno M, Hernandez J-P, Bashan Y (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soil 40:188–193

    CAS  Google Scholar 

  • Bandou E, Lebailly F, Muller F, Dulormne M, Toribio A, Chabrol J, Courtecuisse R, Plenchette C, Prin Y, Duponnois R, Thiao M, Sylla S, Dreyfus B, Bâ AM (2006) The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings. Mycorrhiza 16:559–565

    CAS  PubMed  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hort 109:8–14

    CAS  Google Scholar 

  • Barriuso J, Solano BR, Fray RG, Cámara M, Hartmann A, Mañero FJG (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452

    CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    CAS  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173

    Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker J, Munro M, Atkinson D, Giovannetti M, Marini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera L. Tree Physiol 15:281–293

    PubMed  Google Scholar 

  • Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkäuser, Basel, pp 71–85

    Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288

    Google Scholar 

  • Bever JD, Pringle A, Schultz PA (2002) Dynamics within the plant-arbuscular mycorrhizal fungal mutualism: testing the nature of community feedback. In: van der Heijden MGA, Sanders IE (eds) Mycorrhizal ecology. Springer, Heidelberg, Germany, pp 267–292

    Google Scholar 

  • Blaha G, Stelzl U, Spahn CM, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Method Enzymol 317:292–309

    CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    CAS  PubMed  Google Scholar 

  • Bois G, Bertrand A, Piché Y, Fung M, Khasa DP (2006) Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16:99–109

    CAS  PubMed  Google Scholar 

  • Bonfante-Fasolo P, Scannerini S (1977) Cytological observations on the mycorrhiza Endogone flammicorona-Pinus strobus. Allionia 22:23–34

    Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197

    CAS  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    CAS  Google Scholar 

  • Cao W-H, Liu J, Zhou Q-Y, Cao Y-R, Zheng SF, Du B-X, Zhang J-S, Chen SY (2006) Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ 29:1210–1219

    CAS  PubMed  Google Scholar 

  • Carvajal M, Martinez V, Alcarez CF (1999) Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiol Plant 105:95–101

    CAS  Google Scholar 

  • Carvajal M, Cerda A, Martinez V (2000) Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? New Phytol 145:439–447

    CAS  Google Scholar 

  • Champagnol F (1979) Relationships between phosphate nutrition of plants and salt toxicity. Phosphorus Agric 76:34–43

    Google Scholar 

  • Chen DM, Ellul S, Herdman K, Cairnay JWG (2001) Influence of salinity on biomass production by Australian Pisolithus spp. isolates. Mycorrhiza 11:231–236

    CAS  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soil 44:501–509

    CAS  Google Scholar 

  • Cooke JC, Lefor MW (1990) Comparison of vesicular–arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA. Environ Manage 14:131–137

    Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    CAS  PubMed  Google Scholar 

  • Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sci Hortic 78:83–125

    CAS  Google Scholar 

  • Daniels BA, Trappe JM (1980) Factors affecting spore germination of the vesicular–arbuscular mycorrhizal fungus Glomus epigaeus. Mycologia 72:457–471

    CAS  Google Scholar 

  • Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsch HJ, Bothe H (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J Plant Physiol 141:33–39

    Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286

    CAS  Google Scholar 

  • Dharmasiri N, Estell M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9:302–308

    CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedling to salinity stress. Plant Sci 135:1–9

    CAS  Google Scholar 

  • Diouf D, Duponnois R, Ba AT, Neyra M, Lesueur D (2005) Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Funct Plant Biol 32:1143–1152

    CAS  Google Scholar 

  • Dixon RK, Garg VK, Rao MV (1993) Inoculation of Leucaena and Prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedling growth. Arid Soil Res Rehabil 7:133–144

    Google Scholar 

  • Duke ER, Johnson CR, Koch KE (1986) Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonised with vesicular–arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590

    CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg BJJ (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • El Beltagy A, Khalifa M, Hall M (1979) Salinity in relation to ethylene. Egypt J Hortic 6:269–271

    CAS  Google Scholar 

  • Elias KS, Safir GR (1987) Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl Environ Microbiol 53:1928–1933

    CAS  PubMed  Google Scholar 

  • Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/Plant associations. CRC, Boca Raton, FL, pp 77–85

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    CAS  PubMed  Google Scholar 

  • Flowers T (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    CAS  PubMed  Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and development modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    CAS  PubMed  Google Scholar 

  • Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300

    Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    PubMed  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467

    CAS  PubMed  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2009) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions. This paper has been accepted for publication in Journal of Applied Microbiology 10.1007/978-3-642-01979-1_1

  • Garbaye J, Bowen GD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388

    Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (Pigeonpea). J Plant Growth Regul 27:115–124

    CAS  Google Scholar 

  • Ghorbanli M, Ebrahimzadeh H, Sharifi M (2004) Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biol Plant 48:575–581

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular–arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    PubMed  Google Scholar 

  • Giri B, Kapoor R, Agarwal L, Mukerji KG (2004) Pre-inoculation with arbuscular mycorrhizae helps Acacia auriculiformis grow in degraded Indian wasteland soil. Communications in soil science and plant analysis 35: 193–204

    CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol Fertil Soil 38:170–175

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    PubMed  Google Scholar 

  • Hall MA, Smith AR (1995) Ethylene and the responses of plants to stress. Bulg J Plant Physiol 21:71–79

    CAS  Google Scholar 

  • Hamdia MA, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    CAS  Google Scholar 

  • Hartmond U, Schaesberg NV, Graham JH, Syvertsen JP (1987) Salinity and flooding stress effects on mycorrhizal and nonmycorrhizal citrus rootstock seedlings. Plant Soil 104:37–43

    Google Scholar 

  • Hatimi A (1999) Effect of salinity on the association between root symbionts and Acacia cyanophylla Lind.: growth and nutrition. Plant Soil 216:93–101

    CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA (1995) Salt induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    CAS  Google Scholar 

  • Hirrel MC, Gerdemann JW (1980) Improved growth of onion and bell pepper in saline soils by two vesicular–arbuscular mycorrhizal fungi. Soil Sci Soc Am J 44:654–655

    CAS  Google Scholar 

  • Ho I (1987) Vesicular–arbuscular mycorrhizae of halophytic grasses in the Alvard desert of Oregon. Northwest Sci 61:148–151

    Google Scholar 

  • Hoefnagels MH, Broome SW, Shafer SR (1993) Vesicular–arbuscular mycorrhizae in salt marshes in North Carolina. Estuaries 16:851–858

    Google Scholar 

  • Holguin G, Glick BR (2001) Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microb Ecol 41:281–288

    CAS  PubMed  Google Scholar 

  • Hutchinson LJ (1990) Studies on the systematic of ectomycorrhizal fungi in axenic culture. IV. The effects of some selected fungi toxic compounds upon linear growth. Canadian Journal of Botany 68:2172–2178

    Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    PubMed  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    CAS  PubMed  Google Scholar 

  • Johnson-Green PC, Kenkel NC, Booth T (1995) The distribution and phenology of arbuscular mycorrhizae along an inland salinity gradient. Can J Bot 73:1318–1327

    Google Scholar 

  • Jones RA, El-Abd SO (1989) Prevention of salt-induced epinasty by α-aminooxyacetic acid and cobalt. Plant Growth Regul 8:315–323

    CAS  Google Scholar 

  • Juniper S (1996) The effect of sodium chloride on some vesicular–arbuscular mycorrhizal fungi. PhD Thesis, The University of Western Australia

    Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    CAS  PubMed  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    CAS  Google Scholar 

  • Kernaghan G, Hambling B, Fung M, Khasa D (2002) In vitro selection of Boreal ectomycorrhizal fungi for use in reclamation of saline–alkaline habitats. Restor Ecol 10:1–9

    Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005) Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712

    CAS  PubMed  Google Scholar 

  • Khan MA, Rizvi Y (1994) Effect of salinity, temperature, and growth-regulators on the germination and early seedling growth of Atriplex Griffithii var stocksii. Can J Bot 72:475–479

    Google Scholar 

  • Kloepper JW, Scher FM, Laliberte M, Tipping B (1986) Emergence-promoting rhizobacteria: description and implications for agriculture. In: Swinburne TR (ed) Iron, siderophores, and plant disease. Plenum, New York, pp 155–164

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Krishnamurthy R, Bhagwat KA (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    CAS  PubMed  Google Scholar 

  • Kukreja S, Nandwal AS, Kumar N, Sharma SK, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavaging enzymes, ethylene evolution and membrane integrity of Cicer arietinum as affected by salinity. Biol Plant 49:305–308

    CAS  Google Scholar 

  • Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol 7:215–219

    Google Scholar 

  • Langenfeld-Heyser R, Gao J, Ducic T, Ph T, Lu CF, Fritz E, Gafur A, Polle A (2007) Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus×canescens. Mycorrhiza 17:121–131

    CAS  PubMed  Google Scholar 

  • Levy Y, Dodd J, Krikun J (1983) Effect of irrigation water salinity and rootstock on the vertical distribution of vesicular–arbuscular mycorrhiza in citrus roots. New Phytol 95:397–403

    Google Scholar 

  • Lingua G, Sgorbati S, Citterio A, Fusconi A, Trotta A, Gnavi E, Berta G (1999) Arbuscular mycorrhizal colonization delays nucleus senescence in leek root cortical cells. New Phytol 141:161–169

    Google Scholar 

  • Manschke M, Berta G, Gianinazzi S, Moncousin C (1995) Effect of endomycorrhizal infection on root system development in the apple rootstock (Malus domestica Borkh.) M26, morphogenesis. In: Azcon C, Barea JM, Ocampo J (eds) Mycorrhizas in integrated systems: from genes to plant development. . Office for Official Publications of the European Communities, Brussels, Luxemburg, pp 349–352

    Google Scholar 

  • Marulanda A, Azcon R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    CAS  PubMed  Google Scholar 

  • McMillen B, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular–arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    CAS  Google Scholar 

  • Muhsin TM, Zwiazek JJ (2002a) Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings. Plant Soil 238:217–225

    CAS  Google Scholar 

  • Muhsin TM, Zwiazek JJ (2002b) Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings. New Phytol 153:153–158

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahair ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    CAS  PubMed  Google Scholar 

  • Nguyen H, Calvo Polanco M, Zwiazek JJ (2006) Gas exchange and growth responses of ectomycorrhizal Picea mariana, Picea glauca, and Pinus banksiana seedlings to NaCl and Na2SO4. Plant Biol 8:646–652

    CAS  PubMed  Google Scholar 

  • O&Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Google Scholar 

  • Ojala JC, Jarrell WM, Menge JA, Johnson ELV (1983) Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J 75:255–259

    CAS  Google Scholar 

  • Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    CAS  PubMed  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    CAS  PubMed  Google Scholar 

  • Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol 22:369–374

    CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol 47:368–372

    CAS  PubMed  Google Scholar 

  • Pfeiffer CM, Bloss HE (1988) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular arbuscular mycorrhiza and phosphorus fertilization. New Phytol 108:315–321

    Google Scholar 

  • Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210

    CAS  PubMed  Google Scholar 

  • Pond EC, Menge JA, Jarrell WM (1984) Improved growth of tomato in salinized soil by vesicular–arbuscular mycorrhizal fungi collected from saline soils. Mycologia 76:74–84

    Google Scholar 

  • Poss JA, Pond EC, Menge JA, Jarrell WM (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88:307–319

    CAS  Google Scholar 

  • Príncipe A, Alvarez F, Castro MG, Zachi L, Fischer SE, Mori GB, Jofré E (2007) Biocontrol and PGPR features in native strains isolated from saline soils of Argentina. Curr Microbiol 55:314–322

    PubMed  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Richard AJ, El-Abd SO (1989) Prevention of salt-induced epinasty by a-aminooxyacetic acid and cobalt. Plant Growth Regul 8:315–323

    Google Scholar 

  • Rozema J, Arp W, Van Diggelen J, Van Esbroek M, Broekman R, Punte H (1986) Occurrence and ecological significance of vesicular–arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl 35:457–467

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Alberto EO, Menendez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    CAS  Google Scholar 

  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menendez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    CAS  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2006) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Giainazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Ann Bot 67:135–141

    Google Scholar 

  • Sengupta A, Chaudhuri S (1990) Vesicular arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges River Delta in West Bengal (India). Plant Soil 122:111–113

    Google Scholar 

  • Sergeeva E, Shah S, Glick BR (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotechnol 22:277–282

    CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh A (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    CAS  PubMed  Google Scholar 

  • Shibli RA, Kushad M, Yousef GG, Lila MA (2007) Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation. Plant Growth Regul 51:159–169

    CAS  Google Scholar 

  • Simon-Sarkadi L, Kocsy G, Sebestyen Z (2002) Effect of salt stress on free amino acid and polyamine content in cereals. Acta Biol Szegediensis 46:73–75

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London, p 605

    Google Scholar 

  • Smith GS, Middleton KR, Edmonds AS (1980) Sodium nutrition of pasture plants.1. Translocation of sodium and potassium in relation to transpiration rates. New Phytol 84:603–612

    CAS  Google Scholar 

  • Spychalla JP, Desbough SL (1990) Superoxide dismutase, catalase, and alpha-tocopherol content of stored potato tubers. Plant Physiol 94:1214–1218

    CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    CAS  PubMed  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Google Scholar 

  • Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Environ Microbiol 22:210–213

    CAS  Google Scholar 

  • van Duin WE, Rozema J, Ernst WHO (1989) Seasonal and spatial variation in the occurrence of vesicular–arbuscular mycorrhiza in salt marsh plants. Agric Ecosyst Environ 29:107–110

    Google Scholar 

  • van Peer R, Schippers B (1989) Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can J Microbiol 35:456–463

    Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    CAS  PubMed  Google Scholar 

  • Whipps JM (1990) Carbon utilization. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, UK, pp 59–97

    Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: A review. Ann Bot 88:967–988

    CAS  Google Scholar 

  • Yi H, Calvo Polanco M, MacKinnonc MD, Zwiazek JJ (2008) Responses of ectomycorrhizal Populus tremuloides and Betula papyrifera seedlings to salinity. Environ Exp Bot 62:357–363

    CAS  Google Scholar 

  • Yildrim E, Taylor AG, Spittler TD (2006) Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci Hortic 111:1–6

    Google Scholar 

  • Yue HT, Mo WP, Li C, Zheng YY, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297:139–145

    CAS  Google Scholar 

  • Zhang J-S, Xi C, Shen Y-G, Shen S-Y (2001) A two component gene (NTHK1) encoding a putative ethylene-receptor homolog is both developmentally and stress regulated in tobacco. Theor Appl Genet 102:815–824

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Google Scholar 

  • Zuccarini P (2007) Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ 53:283–289

    CAS  Google Scholar 

Download references

Acknowledgments

The work from our laboratories that is cited in this manuscript has been financially supported by grants from the Italian MIUR and by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Gamalero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gamalero, E., Berta, G., Glick, B.R. (2009). The Use of Microorganisms to Facilitate the Growth of Plants in Saline Soils. In: Khan, M., Zaidi, A., Musarrat, J. (eds) Microbial Strategies for Crop Improvement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01979-1_1

Download citation

Publish with us

Policies and ethics