Secure Hamming Distance Based Computation and Its Applications

  • Ayman Jarrous
  • Benny Pinkas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5536)


This paper examines secure two-party computation of functions which depend only on the Hamming distance of the inputs of the two parties. We present efficient protocols for computing these functions. In particular, we present protocols which are secure in the sense of full simulatability against malicious adversaries.

We show different applications of this family of functions, including a protocol we call m-point-SPIR, which is an efficient variant of symmetric private information retrieval (SPIR). It can be used if the server’s database contains N entries, at most N/logN of which have individual values, and the rest are set to some default value. This variant of PIR is unique since it can be based on the existence of OT alone.


Trusted Third Party Commitment Scheme Homomorphic Encryption Oblivious Transfer Private Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ben-David, A., Pinkas, B., Nisan, N.: Fairplaymp – a system for secure multi-party computation. In: ACM Conference on Computer and Communications Security—ACM CCS 2008. ACM, New York (2008)Google Scholar
  2. 2.
    Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing encrypted numbers. In: Crescenzo and Rubin [9], pp. 206–220Google Scholar
  3. 3.
    Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A practical implementation of secure auctions based on multiparty integer computation. In: Crescenzo and Rubin [9], pp. 142–147Google Scholar
  4. 4.
    Boneh, D. (ed.): CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  5. 5.
    Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor [26], pp. 573–590Google Scholar
  7. 7.
    Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh [4], pp. 126–144Google Scholar
  8. 8.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Di Crescenzo, G., Rubin, A. (eds.): FC 2006. LNCS, vol. 4107. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. In: Advances in Cryptology - Crypto 1982, pp. 205–210 (1982)Google Scholar
  11. 11.
    Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Communications of the ACM 39(5), 77–85 (1996)CrossRefGoogle Scholar
  12. 12.
    Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.: Secure multiparty computation of approximations. ACM Transactions on Algorithms 2(3), 435–472 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product computation for privacy-preserving data mining. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press, New York (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation and transfer with simulation-based security (manuscript) (2008)Google Scholar
  18. 18.
    Indyk, P., Woodruff, D.P.: Polylogarithmic private approximations and efficient matching. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 245–264. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: Wagner [33], pp. 572–591Google Scholar
  20. 20.
    Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed inputs. In: Naor [26], pp. 97–114Google Scholar
  21. 21.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: FOCS 1997, pp. 364–373 (1997)Google Scholar
  22. 22.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor [26], pp. 52–78Google Scholar
  23. 23.
    Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation efficiently with security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: USENIX Security Symposium, pp. 287–302. USENIX (2004)Google Scholar
  25. 25.
    Meier, R., Przydatek, B.: On robust combiners for private information retrieval and other primitives. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 555–569. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Naor, M. (ed.): EUROCRYPT 2007. LNCS, vol. 4515. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  27. 27.
    Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: STOC, pp. 590–599 (2001)Google Scholar
  28. 28.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC 1999, pp. 245–254. ACM Press, New York (1999)Google Scholar
  29. 29.
    Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptology 18(1), 1–35 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  31. 31.
    Paillier, P.: Trapdooring discrete logarithms on elliptic curves over rings. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 573–584. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  32. 32.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner [33], pp. 554–571Google Scholar
  33. 33.
    Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  34. 34.
    Wright, R., Yang, Z.: Privacy-preserving bayesian network structure computation on distributed heterogeneous data. In: Proc. of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 713–718. ACM Press, New York (2004)Google Scholar
  35. 35.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167. IEEE, Los Alamitos (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ayman Jarrous
    • 1
  • Benny Pinkas
    • 1
  1. 1.University of HaifaIsrael

Personalised recommendations