Homomorphic MACs: MAC-Based Integrity for Network Coding

  • Shweta Agrawal
  • Dan Boneh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5536)


Network coding has been shown to improve the capacity and robustness in networks. However, since intermediate nodes modify packets en-route, integrity of data cannot be checked using traditional MACs and checksums. In addition, network coded systems are vulnerable to pollution attacks where a single malicious node can flood the network with bad packets and prevent the receiver from decoding the packets correctly. Signature schemes have been proposed to thwart such attacks, but they tend to be too slow for online per-packet integrity.

Here we propose a homomorphic MAC which allows checking the integrity of network coded data. Our homomorphic MAC is designed as a drop-in replacement for traditional MACs (such as HMAC) in systems using network coding.


Signature Scheme Intermediate Node Network Code Sign Algorithm Security Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahlswede, R., Cai, N., Li, S., Yeung, R.: Network information flow. IEEE Transactions on Information Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Koetter, R.: An algebraic approach to network coding. IEEE/ACM Transactions on Networking 11, 782–795 (2003)CrossRefGoogle Scholar
  3. 3.
    Li, S.Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Trans. Inform. Theory 49(2), 371–381 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature schemes for network coding. In: Proc. of PKC 2009 (2009)Google Scholar
  5. 5.
    Zhao, F., Kalker, T., Médard, M., Han, K.: Signatures for content distribution with network coding. In: Proc. of International Symposium on Information Theory (ISIT) (2007)Google Scholar
  6. 6.
    Han, K., Ho, T., Koetter, R., Medard, M., Zhao, F.: On network coding for security. In: Military Communications Conference (Milcom) (2007)Google Scholar
  7. 7.
    Charles, D., Jain, K., Lauter, K.: Signatures for network coding. In: CISS 2006 (2006); to appear in International Journal of Information and Coding TheoryGoogle Scholar
  8. 8.
    Krohn, M., Freedman, M., Mazieres, D.: On the-fly verification of rateless erasure codes for efficient content distribution. In: Proc. of IEEE Symposium on Security and Privacy, pp. 226–240 (2004)Google Scholar
  9. 9.
    Gkantsidis, C., Rodriguez, P.: Network coding for large scale content distribution. In: Proc. of IEEE INFOCOM 2005, pp. 2235–2245 (2005)Google Scholar
  10. 10.
    Gkantsidis, C., Rodriguez, P.: Cooperative security for network coding file distribution. In: INFOCOM (2006)Google Scholar
  11. 11.
    Gkantsidis, C., Miller, J., Rodriguez, P.: Comprehensive view of a live network coding p2p system. In: Internet Measurement Conference, pp. 177–188 (2006)Google Scholar
  12. 12.
    Carter, L., Wegman, M.: Universal classes of hash functions. Journal of Computer and System Sciences 18(2), 143–154 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast security: A taxonomy and some efficient constructions. In: Proc. of INFOCOM 1999, vol. 2, pp. 708–716 (1999)Google Scholar
  14. 14.
    Perrig, A., Canetti, R., Tygar, D., Song, D.: Efficient authentication and signature of multicast streams over lossy channels. In: Proc. of 2000 IEEE Symposium on Security and Privacy (2000)Google Scholar
  15. 15.
    Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) Asiacrypt 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Protocols. CRC Press, Boca Raton (2007)zbMATHGoogle Scholar
  17. 17.
    Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shweta Agrawal
    • 1
  • Dan Boneh
    • 2
  1. 1.The University of Texas at AustinUSA
  2. 2.Stanford UniversityUSA

Personalised recommendations