Advertisement

Tracing and Revoking Pirate Rebroadcasts

  • Aggelos Kiayias
  • Serdar Pehlivanoglu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5536)

Abstract

All content distribution systems are vulnerable to the attack of rebroadcasting: in a pirate rebroadcast a pirate publishes the content in violation of the licensing agreement. This attack defeats any tracing mechanism that requires interaction with the pirate decoder for identifying compromised keys. Merely tracing pirate rebroadcasts is of little use and one should be also able to revoke the involved traitor keys. The only currently known scheme addressing this issue is implemented as part of the Advanced Access Content System (AACS) used in Blu-Ray and HD-DVD disks. In this paper we perform an analysis of this construction and we find it has serious limitations: the number of revocations is bound by the size of the receiver storage (for the actual parameters reported this is merely 85 keys).

We address the limitations of the state of the art (i) by formally modeling the problem of tracing and revoking pirate rebroadcasts and (ii) by presenting the first efficient constructions of tracing and revoking pirate rebroadcasts that are capable of performing tracing for unlimited numbers of traitors and revoking unlimited numbers of users. We present three instantiations of our framework: our first construction achieves a linear communication overhead in the number of revoked users and traitors and is capable of eliminating a pirate rebroadcast by any number of traitors in time that depends logarithmically in the number of users and polynomially on the number of revocations and traitors. Our second construction assumes a fixed bound on the number of traitors and improves the elimination time to depend only logarithmically on the number of revocations. Both of these constructions require merely a binary marking alphabet. Our third construction utilizes a larger marking alphabet and achieves even faster pirate rebroadcast elimination; our analysis improves the previously known bound for the same alphabet size due to Fiat and Tassa from Crypto’99 while offering revocation explicitly.

Keywords

Communication Overhead Unlimited Number Alphabet Size Broadcast Encryption Dynamic Traitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    AACS Specifications specifications (2006), http://www.aacsla.com/
  2. 2.
    Attrapadung, N., Imai, H.: Graph-Decomposition-Based Frameworks for Subset-Cover Broadcast Encryption and Efficient Instantiations. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 100–120. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Berkman, O., Parnas, M., Sgall, J.: Efficient dynamic traitor tracing. In: SODA 2000, pp. 586–595 (2000)Google Scholar
  4. 4.
    Boneh, D., Franklin, M.: An Efficient Public-Key Traitor Tracing Scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Tracing with Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Shaw, J.: Collusion-Secure Fingerprinting for Digital Data. IEEE Transactions on Information Theory 44(5), 1897–1905 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chor, B., Fiat, A., Naor, M.: Tracing Traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing Traitors. IEEE Transactions on Information Theory 46(3), 893–910 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chabanne, H., Hieu Phan, D., Pointcheval, D.: Public Traceability in Traitor Tracing Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Fazio, N.: Public Key Broadcast Encryption for Stateless Receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revoking. In: PODC 2003, Proceedings of the Twenty-Second ACM Symposium on Principles of Distributed Computing (PODC 2003), Boston, Massachusetts, July 13-16 (2003)Google Scholar
  13. 13.
    Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  14. 14.
    Fiat, A., Tassa, T.: Dynamic Traitor Tracing. Journal of Cryptology 4(3), 211–223 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gentry, C., Ramzan, Z., Woodruff, D.P.: Explicit Exclusive Set Systems with Applications to Broadcast Encryption. In: FOCS 2006, pp. 27–38 (2006)Google Scholar
  16. 16.
    Gafni, E., Staddon, J., Lisa Yin, Y.: Efficient Methods for Integrating Traceability and Broadcast Encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 372–387. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Garay, J.A., Staddon, J., Wool, A.: Long-Lived Broadcast Encryption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-Based Revocation in Groups of Low-State Devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 511–527. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Halevy, D., Shamir, A.: The LSD Broadcast Encryption Scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Jin, H., Lotspiech, J.: Renewable Traitor Tracing: A Trace-Revoke-Trace System For Anonymous Attack. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 563–577. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Jin, H., Lotspiech, J., Nusser, S.: Traitor tracing for prerecorded and recordable media. In: Digital Rights Management Workshop, pp. 83–90 (2004)Google Scholar
  22. 22.
    Kiayias, A., Yung, M.: Self Protecting Pirates and Black-Box Traitor Tracing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 63–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Kiayias, A., Yung, M.: On Crafty Pirates and Foxy Tracers. In: Sander, T. (ed.) DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Kiayias, A., Pehlivanoglu, S.: Pirate Evolution: How to Make the Most of Your Traitor Keys. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 448–465. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Kurosawa, K., Desmedt, Y.: Optimum Traitor Tracing and Asymmetric Schemes. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  27. 27.
    Le, T.V., Burmester, M., Hu, J.: Short c-Secure Fingerprinting Codes. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 422–427. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Micciancio, D., Panjwani, S.: Corrupting One vs. Corrupting Many: The Case of Broadcast and Multicast Encryption. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 70–82. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Naor, D., Naor, M., Lotspiech, J.B.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Naor, M., Pinkas, B.: Threshold Traitor Tracing. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 502–517. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  31. 31.
    Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  32. 32.
    Hieu Phan, D., Safavi-Naini, R., Tonien, D.: Generic Construction of Hybrid Public Key Traitor Tracing with Full- Public-Traceability. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 49–63. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  33. 33.
    Safavi-Naini, R., Wang, Y.: Sequential Traitor Tracing. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 316–332. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  34. 34.
    Safavi-Naini, R., Wang, Y.: Collusion secure q-ary fingerprinting for perceptual content. In: Sander, T. (ed.) DRM 2001. LNCS, vol. 2320, pp. 57–75. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  35. 35.
    Safavi-Naini, R., Wang, Y.: New Results on Frameproof Codes and Traceability Schemes. IEEE Transactions on Information Theory 47(7), 3029–3033 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Safavi-Naini, R., Wang, Y.: Traitor Tracing for Shortened and Corrupted Fingerprints. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 81–100. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  37. 37.
    Silverberg, A., Staddon, J., Walker, J.L.: Efficient Traitor Tracing Algorithms Using List Decoding. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 175–192. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  38. 38.
    Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial Properties of Frameproof and Traceability Codes. IEEE Transactions on Information Theory 47(3), 1042–1049 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Stinson, D.R., Wei, R.: Combinatorial Properties and Constructions of Traceability Schemes and Frameproof Codes. SIAM Journal on Discrete Math. 11(1), 41–53 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: ACM 2003, pp. 116–125 (2003)Google Scholar
  41. 41.
    Jho, N., Hwang, J.Y., Hee Cheon, J., Hwan Kim, M., Hoon Lee, D., Sun Yoo, E.: One-Way Chain Based Broadcast Encryption Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 559–574. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Aggelos Kiayias
    • 1
  • Serdar Pehlivanoglu
    • 1
  1. 1.Computer Science and EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations