Skip to main content

Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography

  • Conference paper
Book cover Functional Imaging and Modeling of the Heart (FIMH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5528))

Abstract

Automatic delineation of the myocardium in real-time 3D echocardiography may be used to aid the diagnosis of heart problems such as ischaemia, by enabling quantification of wall thickening and wall motion abnormalities. Distinguishing between myocardial and non-myocardial tissue is, however, difficult due to low signal-to-noise ratio as well as the efficiency constraints imposed on any algorithmic solution by the large size of the data under consideration. In this paper, we take a machine learning approach treating this problem as a two-class 3D patch classification task. We demonstrate that solving such task using random forests, which are the discriminative classifiers developed recently in the machine learning community, allows to obtain accurate delineations in a matter of seconds (on a CPU) or even in real-time (on a GPU) for the entire 3D volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lynch, M., Ghita, O., Whelan, P.: Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge. Computerized Medical Imaging and Graphics 30(4), 255–262 (2006)

    Article  Google Scholar 

  2. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Computation 9(7), 1545–1588 (1997)

    Article  Google Scholar 

  3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Winn, J.M., Shotton, J.: The layout consistent random field for recognizing and segmenting partially occluded objects. In: CVPR (1), pp. 37–44 (2006)

    Google Scholar 

  5. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: CVPR (2008)

    Google Scholar 

  6. Schroff, F., Criminisi, A., Zisserman, A.: Object class segmentation using random forests. In: BMVC (2008)

    Google Scholar 

  7. Sharp, T.: Implementing decision trees and forests on a GPU. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 595–608. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: ICML, pp. 161–168 (2006)

    Google Scholar 

  9. Noble, J., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)

    Article  Google Scholar 

  10. Yan, J., Zhuang, T.: Applying improved fast marching method to endocardial boundary detection in echocardiographic images. Pattern Recognition Letters 24(15), 2777–2784 (2003)

    Article  Google Scholar 

  11. Angelini, E.D., Homma, S., Pearson, G., Holmes, J.W., Laine, A.F.: Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: A clinical study on right and left ventricles. Ultrasound in Medicine & Biology 31(9), 1143–1158 (2005)

    Article  Google Scholar 

  12. Jacob, G., Noble, J., Behrenbruch, C., Kelion, A., Banning, A.: A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography. IEEE Trans. Med. Imaging 21(3), 226–238 (2002)

    Article  Google Scholar 

  13. Zhu, Y., Papademetris, X., Sinusas, A., Duncan, J.S.: Segmentation of myocardial volumes from real-time 3D echocardiography using an incompressibility constraint. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 44–51. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Nillesen, M.M., Lopata, R.G., Gerrits, I.H., Kapusta, L., Thijssen, J.M., de Korte, C.L.: Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images. Ultrasound in Medicine & Biology 34(4), 674–680 (2008)

    Article  Google Scholar 

  15. Tao, Z., Tagare, H., Beaty, J.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Trans. Med. Imaging 25(11), 1483–1491 (2006)

    Article  Google Scholar 

  16. Chang, R., Wu, W., Moon, W.K., Chou, Y., Chen, D.: Support vector machines for diagnosis of breast tumors on US images. Academic Radiology 10(2), 189–197 (2003)

    Article  Google Scholar 

  17. Drukker, K., Giger, M.L., Vyborny, C.J., Mendelson, E.B.: Computerized detection and classification of cancer on breast ultrasound1. Academic Radiology 11(5), 526–535 (2004)

    Article  Google Scholar 

  18. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, pp. 148–156 (1996)

    Google Scholar 

  19. Pujol, O., Rosales, M., Radeva, P., Nofrerias-Fernández, E.: Intravascular ultrasound images vessel characterization using adaboost. In: Magnin, I.E., Montagnat, J., Clarysse, P., Nenonen, J., Katila, T. (eds.) FIMH 2003. LNCS, vol. 2674, pp. 242–251. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Georgescu, B., Zhou, X.S., Comaniciu, D., Gupta, A.: Database-guided segmentation of anatomical structures with complex appearance. In: CVPR (2) (2005)

    Google Scholar 

  21. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  22. Andres, B., Köthe, U., Helmstaedter, M., Denk, W., Hamprecht, F.A.: Segmentation of SBFSEM volume data of neural tissue by hierarchical classification. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 142–152. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Hope, T.A., Gregson, P.H., Linney, N.C., Schmidt, M.H., Abdolell, M.: Selecting and assessing quantitative early ultrasound texture measures for their association with cerebral palsy. IEEE Trans. Med. Imaging 27(2), 228–236 (2008)

    Article  Google Scholar 

  24. Vibha, L., Harshavardhan, G.M., Pranaw, K., Shenoy, P.D., Venugopal, K.R., Patnaik, L.M.: Lesion detection using segmentation and classification of mammograms. In: AIAP 2007, pp. 311–316 (2007)

    Google Scholar 

  25. Viola, P.A., Jones, M.J.: Robust real-time face detection. In: ICCV, p. 747 (2001)

    Google Scholar 

  26. van Rijsbergen, C.: Information Retrieval. Butterworth (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lempitsky, V., Verhoek, M., Noble, J.A., Blake, A. (2009). Random Forest Classification for Automatic Delineation of Myocardium in Real-Time 3D Echocardiography. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics