Skip to main content

Partitional Conceptual Clustering of Web Resources Annotated with Ontology Languages

  • Chapter
Knowledge Discovery Enhanced with Semantic and Social Information

Part of the book series: Studies in Computational Intelligence ((SCI,volume 220))

Abstract

The paper deals with the problem of cluster discovery in the context of Semantic Web knowledge bases. A partitional clustering algorithm is presented. It is applied for grouping resources contained in knowledge bases and expressed in the standard ontology languages. The method exploits a language-independent semi-distance measure for individuals that is based on the semantics of the resources w.r.t. a context represented by a set of concept descriptions (discriminating features). The clustering algorithm adapts Bisecting k-Means method to work with medoids. Besides, we propose simple mechanisms to assign each cluster an intensional definition that may suggest new concepts for the knowledge base (vivification). A final experiment demonstrates the validity of the approach through absolute quality indices for clustering results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)

    Article  Google Scholar 

  3. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Transactions on Systems, Man, and Cybernetics 28(3), 301–315 (1998)

    Article  Google Scholar 

  4. Bock, H.H., Diday, E.: Analysis of symbolic data: exploratory methods for extracting statistical information from complex data. Springer, Heidelberg (2000)

    Google Scholar 

  5. Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1-2), 353–367 (1996)

    Article  MathSciNet  Google Scholar 

  6. Borgida, A., Walsh, T.J., Hirsh, H.: Towards measuring similarity in description logics. In: Horrocks, I., Sattler, U., Wolter, F. (eds.) Working Notes of the International Description Logics Workshop, CEUR Workshop Proceedings, Edinburgh, UK, vol. 147 (2005)

    Google Scholar 

  7. d’Amato, C., Fanizzi, N., Esposito, F.: Reasoning by analogy in description logics through instance-based learning. In: Tummarello, G., Bouquet, P., Signore, O. (eds.) Proceedings of Semantic Web Applications and Perspectives, 3rd Italian Semantic Web Workshop, SWAP 2006. CEUR Workshop Proceedings, Pisa, Italy, vol. 201 (2006)

    Google Scholar 

  8. d’Amato, C., Staab, S., Fanizzi, N., Esposito, F.: Efficient discovery of services specified in description logics languages. In: Di Noia, T., et al. (eds.) Proceedings of the SMR2 2007 Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web (SMRR 2007) co-located with ISWC 2007 + ASWC 2007, CEUR Workshop Proceedings. Busan, South Korea, vol. 243. CEUR (2007)

    Google Scholar 

  9. Dean, M., Schreiber, G.: Web Ontology Language Reference. W3C recommendation, W3C (2004), http://www.w3.org/TR/owl-ref

  10. Emde, W., Wettschereck, D.: Relational instance-based learning. In: Saitta, L. (ed.) Proceedings of the 13th International Conference on Machine Learning, ICML 1996, pp. 122–130. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  11. Fanizzi, N., d’Amato, C., Esposito, F.: Randomized metric induction and evolutionary conceptual clustering for semantic knowledge bases. In: Silva, M., Laender, A., Baeza-Yates, R., McGuinness, D., Olsen, O., Olstad, B. (eds.) Proceedings of the ACM International Conference on Knowledge Management, CIKM 2007. Lisbon Portugal. ACM Press, New York (2007)

    Google Scholar 

  12. Fanizzi, N., d’Amato, C., Esposito, F.: Conceptual clustering and its application to concept drift and novelty detection. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 318–332. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in expressive description logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 99–110. Springer, Heidelberg (2004)

    Google Scholar 

  14. Hirano, S., Tsumoto, S.: An indiscernibility-based clustering method. In: Hu, X., Liu, Q., Skowron, A., Lin, T.Y., Yager, R., Zhang, B. (eds.) 2005 IEEE International Conference on Granular Computing, pp. 468–473. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  15. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

    Article  Google Scholar 

  16. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  17. Janowicz, K.: Sim-dl: Towards a semantic similarity measurement theory for the description logic \(\mathcal{ALCNR}\) in geographic information retrieval. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1681–1692. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, Chichester (1990)

    Google Scholar 

  19. Kietz, J.U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193–218 (1994)

    Article  MATH  Google Scholar 

  20. Kirsten, M., Wrobel, S.: Relational distance-based clustering. In: Page, D.L. (ed.) ILP 1998. LNCS (LNAI), vol. 1446, pp. 261–270. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Kramer, S., Lavrač, N., Džeroski, S.: Propositionalization approaches to relational data mining. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, Springer, Heidelberg (2001)

    Google Scholar 

  22. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \({\cal ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS, vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Nasraoui, O., Krishnapuram, R.: One step evolutionary mining of context sensitive associations and web navigation patterns. In: Proceedings of the SIAM conference on Data Mining, Arlington, VA, pp. 531–547 (2002)

    Google Scholar 

  25. Nienhuys-Cheng, S.H.: Distances and limits on Herbrand interpretations. In: Page, D.L. (ed.) ILP 1998. LNCS (LNAI), vol. 1446, pp. 250–260. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  26. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  27. Sebag, M.: Distance induction in first order logic. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI), vol. 1297, pp. 264–272. Springer, Heidelberg (1997)

    Google Scholar 

  28. Stepp, R.E., Michalski, R.S.: Conceptual clustering of structured objects: A goal-oriented approach. Artificial Intelligence 28(1), 43–69 (1986)

    Article  Google Scholar 

  29. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search – The Metric Space Approach. In: Advances in Database Systems, Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Esposito, F., Fanizzi, N., d’Amato, C. (2009). Partitional Conceptual Clustering of Web Resources Annotated with Ontology Languages. In: Berendt, B., et al. Knowledge Discovery Enhanced with Semantic and Social Information. Studies in Computational Intelligence, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01891-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01891-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01890-9

  • Online ISBN: 978-3-642-01891-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics