Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 218))

  • 1172 Accesses

Abstract

The oxygen mass transfer coefficient (KLa) is of paramount importance in conducting aerobic fermentation. KLa also serves to compare the efficiency of bioreactors and their mixing devices as well as being an important scale-up factor. In submerged fermentations, four methods are available to estimate the overall oxygen mass transfer coefficient (KLa): the dynamic method, the stationary method based on a previous determination of the oxygen uptake rate (QO2X), the gaseous oxygen balance and the carbon dioxide balance. Each method provides a distinct estimation of the value of KLa. Data reconciliation can be used to obtain the most probable value of KLa by minimizing an objective function that includes measurement terms and oxygen conservation models, each being weighted according to their level of confidence. Another alternative, for a more rapid determination of KLa, is using a neural network which has been previously trained to predict KLa from the series of oxygen conservation models. Results obtained with this new approach show that KLa can be predicted rapidly and gives values that are equivalent to those obtained with the conventional data reconciliation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jarai, M.: Factors Affecting the Scale-Up of Aerated Fermentation Processes. Int. Chem. Eng. 19, 701–708 (1979)

    Google Scholar 

  2. Moo-Young, M., Blanch, H.W.: Design of Biochemical Reactors – Mass Transfer Criteria for Simple and Complex Systems. Adv. Biochem. Eng./Biotechnol. 19, 1–69 (1981)

    Google Scholar 

  3. Yagi, H., Yoshida, F.: Oxygen Absorption in Fermenters: Effects of Surfactants, Antifoaming Agents, and Sterilized Cells. J. Ferment. Technol. 52, 905–916 (1974)

    Google Scholar 

  4. Gauthier, L., Thibault, J., LeDuy, A.: Measuring K L a with Randomly Pulsed Dynamic Method. Biotechnol. Bioeng. 37, 889–893 (1991)

    Article  Google Scholar 

  5. Taguchi, H., Humphery, A.E.: Dynamic Measurement of the Volumetric Oxygen Transfer Coefficient in Fermentation Systems. J. Ferment. Technol. 14, 881–889 (1966)

    Google Scholar 

  6. Siegel, S.D., Gaden Jr., E.L.: Automatic Control of Dissolved Oxygen Levels in Fermentations. Biotechnol. Bioeng. 4, 345–356 (1962)

    Article  Google Scholar 

  7. Shuler, M.L., Kargi, F.: Bioprocess Engineering – Basic Principles. Prentice Hall PTR, New Jersey (1992)

    Google Scholar 

  8. Pouliot, K., Thibault, J., Garnier, A., Acuña Leiva, G.: K L a Evaluation During the Course of Fermentation Using Data Reconciliation Techniques. Bioprocess Biosystems. Engineering. 23, 565–573 (2000)

    Google Scholar 

  9. Patel, N., Thibault, J.: Evaluation of Oxygen Mass Transfer in Aspergillus Niger Fermentation Using Data Reconciliation. Biotechnol. Prog. 20, 239–247 (2004)

    Article  Google Scholar 

  10. Brown, D.E.: Bioprocess Measurements and Control. Chemistry & Industry, 678–681 (September 16, 1991)

    Google Scholar 

  11. Hodouin, D., Bazin, C., Makni, S.: On-line Reconciliation of Mineral Processing Data. In: Proc. of the AIME/SME Symposium – Emerging Computer Techniques for the Mineral Industry, Reno, Nevada, pp. 101–110 (1993)

    Google Scholar 

  12. Cruz, A.J.G., Silva, A.S., Araujo, M.L.G.C., Giordano, R.C., Hokka, C.O.: Estimation of the Volumetric Oxygen Transfer Coefficient (K L a) From the Gas Balance and Using a Neural Network Technique. Braz. J. Chem. Eng. 16, 179–183 (1999)

    Article  Google Scholar 

  13. Rao, A.R., Kumar, B.: Predicting Re-aeration Rates Using Artificial Neural Networks in Surface Aerators. Int. J. Appl. Environ. Sci. 2, 155–166 (2007)

    Google Scholar 

  14. Djebbar, Y., Narbaitz, R.M.: Neural Network Prediction of Air Stripping K L a. J. Environ. Eng. 128, 451–460 (2002)

    Article  Google Scholar 

  15. Yamane, T., Shimizu, S.: Fed-batch Techniques in Microbial Processes. Adv. Biochem. Eng./Biotechnol. 30, 147–194 (1984)

    Google Scholar 

  16. Copella, S.J., Dhurjati, P.: A Detailed Analysis of Saccharomyces cerevisiae Growth Kinetics in Batch, Fed-batch, and Hollow-fiber Bioreactors. Chem. Eng. J. 41, B27–B35 (1989)

    Article  Google Scholar 

  17. Wang, H.Y., Cooney, C.L., Wang, D.I.C.: Computer-Aided Baker’s Yeast Fermentations. Biotechnol. Bioeng. 19, 69–86 (1977)

    Article  Google Scholar 

  18. Atkinson, B., Mavituna, F.: Biochemical Engineering and Biotechnology Handbook, 2nd edn. Stockton Press, New York (1991)

    Google Scholar 

  19. Gagnon, H., Lounes, M., Thibault, J.: Power Consumption and Mass Transfer in Agitation Gas-Liquid Columns: A Comparative Study. Can. J. Chem. Eng. 76, 379–389 (1998)

    Article  Google Scholar 

  20. Heinzle, E.: Present and Potential Applications of Mass Spectrometry for Bioprocess Research and Control. J. Biotechnol. 25, 81–114 (1992)

    Article  Google Scholar 

  21. Crowe, C.M.: Observability and Redundancy of Process Data for Steady State Reconciliation. Chem. Eng. Sci. 44, 2909–2917 (1989)

    Article  Google Scholar 

  22. Hodouin, D., Everell, M.D.: A Hierarchical Procedure for Adjustment and Material Balancing of Mineral Process Data. Int. J. Miner. Process. 7, 91–116 (1980)

    Article  Google Scholar 

  23. Liebman, M.J., Edgar, T.F., Lasdon, L.S.: Efficient Data Reconciliation and Estimation for Dynamic Processes Using Nonlinear Programming Techniques. Comput. Chem. Eng. 16, 963–986 (1992)

    Article  Google Scholar 

  24. Mah, R.S.H.: Chemical Process Structures and Information Flows. Batterworths, Boston (1990)

    Google Scholar 

  25. Makni, S., Hodouin, D., Bazin, C.: A Recursive Node Imbalance Method Incorporating a Model of Flowrate Dynamics for On-Line Material Balance of Complex Flowsheets. Miner. Eng. 8, 753–766 (1995)

    Article  Google Scholar 

  26. Lippmann, R.P.: An Introduction to Computing With Neural Nets. IEEE ASSP Magazine 4(2), 4–22 (1987)

    Article  Google Scholar 

  27. Thibault, J., Van Breusegem, V., Chéruy, A.: On-line Prediction of Fermentation Variables Using Neural Networks. Biotechnol. Bioeng. 36, 1041–1048 (1990)

    Article  Google Scholar 

  28. Koprinkova-Hristova, P., Patarinska, T.: Neural Network Software Sensors Design for Lysine Fermentation Process. Applied Artificial Intelligence 22, 235–253 (2008)

    Article  Google Scholar 

  29. Mangesh, M.G., Jana, A.K.: A comparison of Three Sets of DSP Algorithms for Monitoring the Production of Ethanol in Fed-Batch Baker’s Yeast Fermenter. Measurement 41, 970–985 (2008)

    Article  Google Scholar 

  30. Lawrynczuk, M.: Modelling and nonlinear predictive control of a yeast Fermentation biochemical reactor using neural networks. Chem. Eng. J. 145, 290–307 (2008)

    Article  Google Scholar 

  31. Powell, M.J.D.: Some Global Convergence Properties of a Variable Metric Algorithm for Minimization without Exact Line Searches. In: ASM/SIAM Symp. on Non-linear Programming, New York (1975)

    Google Scholar 

  32. Alves, R.M.B., Nascimento, C.A.O.: Analysis and Detection of Outliers and Systematic Errors in Process Plant Data. Chem. Eng. Comm. 194, 382–397 (2007)

    Article  Google Scholar 

  33. Ruchti, G., Dunn, I.J., Bourne, J.R.: Comparison of Dynamic Oxygen Electrode Methods for the Measurement of K L a. Biotechnol. Bioeng. 23, 277–290 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patel, N., Thibault, J. (2009). Data Reconciliation Using Neural Networks for the Determination of KLa. In: do Carmo Nicoletti, M., Jain, L.C. (eds) Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control. Studies in Computational Intelligence, vol 218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01888-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01888-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01887-9

  • Online ISBN: 978-3-642-01888-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics